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R. L. Goodstein and mathematical logic
GRAHAM HOARE

Born in London, Reuben Louis Goodstein (1912-1985) completed his
secondary education at St Paul's School and in 1931 proceeded to
Magdalene College, Cambridge, with a Major Open Scholarship to read
mathematics. He graduated in 1933 having taken firsts in Parts I and II of
the Mathematical Tripos. From 1933 to 1935 his research on transfinite
numbers was supervised by Professor J. E. Littlewood. He took a MSc and
left Cambridge in 1935 to take up an appointment as lecturer in pure and
applied mathematics at Reading University, a position he held until late
1947. While undertaking a strenuous teaching load at Reading his research
interests were developing and for this work he received a PhD from the
University of London in 1946, which was supervised by the philosopher
Ludwig Wittgenstein.

In 1948 Goodstein was appointed Professor and head of department at
University College, Leicester, a position he held until his retirement in 1977.
Remarkably, he was the first person whose main interests were in
mathematical logic to hold a chair in a British university. At the critical
time of transition from college to full university at Leicester in 1957
Goodstein was Dean of Science and from 1966 to 1969 he was Pro-Vice-
Chancellor. By the time he retired his department had expanded from a staff
of six to twenty-three with a corresponding increase in student numbers.

Towards the end of the 19th century something of a crisis had arisen in
the foundations of mathematics, primarily in the theory of sets. Cantor
himself, in 1899, discovered a paradoxical result and Russell found a serious
flaw in Frege's work. These difficulties elicited various responses,
principally from Russell, Brouwer, Zermelo (and Fraenkel) and Skolem.
The axiomatic set-theoretic system of Zermelo-Fraenkel was the most
widely adopted but this came at a price; it cannot be proved to be consistent.
As André Weil was alleged to have said, “God exists since mathematics is
consistent and the Devil exists since we cannot prove it.” Essentially, there
are two opposing trends in the study of the foundations of mathematics,
namely, the infinitistic or set-theoretical and the finitistic or arithmetical;
Goodstein adhered to the latter. Indeed, not even Brouwer's intuitionist
approach was sufficiently stringent for him. He rejected the tertium non
datur (law of excluded middle), and its
analogue and was led to a complete
rejection of quantification theory.

not (∀x) R (x) ⇒ (∃x) not R (x)
not (∃x) R (x) ⇒ (∀x) not R (x)

It was Thoralf Skolem, in a 1923 paper, who grasped clearly and
decisively the full power of the recursive mode of thought in his formulation
of a portion of elementary arithmetic. Skolem proposed that arithmetic
should be based not on set theory but on recursion, a modest proposal since
it sought to establish a new foundation for arithmetic and not the whole of
mathematics. Goodstein's extreme finitist view of mathematics led him to
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410 THE MATHEMATICAL GAZETTE

investigate those concepts and theorems from arithmetic and analysis which
can be interpreted primitive recursively. He formulated primitive recursive
arithmetic (PRA) as a logic-free equation calculus; all propositions are
equations of the form A = B where A and B are primitive recursive
functions or terms which conform to standard substitution and uniqueness
rules. The propositional connectives (and, not, or, implies) and the bounded
quantifiers are introduced arithmetically. In this axiom-free equation
calculus the principle of mathematical induction is superfluous. Influenced
by Wittgenstein, whose classes he attended during his time at Cambridge,
and encouraged by Paul Bernays, Goodstein developed his ideas of PRA
and analysis in a series of monographs (particularly [1, 2]) and research
papers (beginning with [3]). In analysis, for example, he gave the theory of
exponential, logarithmic and circular functions from his strictly finitistic
viewpoint and after quite a struggle showed how Gauss's second proof of the
fundamental theorem of algebra could be rewritten in finitist form. Much of
classical analysis can be saved, then, but Weierstrass's theorem, that all
monotone bounded sequences have a limit, is lost, since unbounded
quantifiers are forbidden. Goodstein's attitude to the foundations was not
widely shared in Britain but the Leningrad (St Petersburg) school showed
interest and three of his books received Russian translations.

(∀, ∃)

In his first incompleteness theorem Gödel constructed a sentence which
is undecidable by the methods of PA (Peano Arithmetic; Peano's axioms
augmented by first-order predicate logic). Since 1931 mathematicians had
been searching for a strictly mathematical example of a theorem that is true
but not provable by the methods of PA. The first such example was found in
1977 by Leo Harrington and Jeff Paris which involved a simple extension of
the Finite Ramsey theorem, a result in combinatorics which grew out of the
work of Laurie Kirby and Paris. Perhaps the most astonishing result of this
genre is Goodstein's theorem, The restricted ordinal theorem, which involves
a highly counter-intuitive result in number theory. It begins by expressing a
positive integer in some base, , say, and also writing each exponent in the
same base . In base 2, for example: . A Goodstein
sequence is now defined by repeating the following process which involves
replacing each occurrence of the base by and then subtracting 1 so
the next number in our example becomes and the next,

, and so on. Goodstein's theorem states that such
sequences terminate at zero after finitely many steps. According to Kirby
and Paris, even if we start with the process reaches zero at base

.

x
x 43 = 222 + 1 + 22 + 1 + 2 + 1

x x + 1
333 + 1 + 33 + 1 + 3

444 + 1 + 44 + 1 + 3

4 = 22

3.2402,653,211 − 1
Goodstein published his proof of the theorem in 1944 using transfinite

induction ( -induction) for ordinals less than (i.e. the least of the
solutions for to satisfy , where is the first transfinite ordinal) and
he noted the connection with Gentzen's proof of the consistency of
arithmetic by the same means. The significance of Goodstein's theorem
emerged in 1982 when Kirby and Paris proved that it is unprovable in PA
but can be proved in a stronger system such as second order arithmetic. It

ε0 ε0
ε ε = ωε ω

4
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seems strange that one of Goodstein's most important results should run
counter to his efforts to reconstruct mathematics along finitist lines. André
Weil considered Gentzen a lunatic who used transfinite induction to prove
the consistency of ordinary induction. Goodstein took the view that Weil's
criticism overlooks the essential point that what Gentzen achieved was an
elimination of quantifiers at the cost of introducing a principle of transfinite
induction. Goodstein described transfinite induction as a ‘minimum
deviation from the previously accepted field of finitist processes’.

According to Ray Monk, in his splendid biography of Wittgenstein,
Wittgenstein's five favourite students were ‘(Francis) Skinner, Louis
Goodstein, H. S. M. Coxeter, Margaret Masterman and Alice Ambrose’.
Skinner, as a contemporary of Goodstein's at St Paul's, was allocated the
task of recording Wittgenstein's deliberations during the classes. Copies
were made and distributed but Skinner, now a wrangler, died suddenly in
1941, and his detailed notes of Wittgenstein's lectures were parcelled up by
Wittgenstein and sent to Goodstein at Reading. Eventually, as Goodstein
approached retirement, he chose to donate these manuscripts to the MA
Library (at Leicester). This body of work comprised much of what became
known as the Blue and Brown books. These underpinned Wittgenstein's
second great work after the Tractatus, his Philosophical Investigations,
which was published posthumously through the labours of philosophers
working from sources parallel to the dormant manuscripts held privately for
some thirty years by Goodstein.

Now a diversion. Goodstein and Alan Turing were born in the same
year and both entered Cambridge in 1931. According to letters written
home to his mother Sara in October and November 1937 while he was in
America, Turing received a substantial paper from the LMS secretary to
referee and, later, a letter from the secretary of the Faculty Board of
Mathematics at Cambridge asking if he would be a PhD examiner. The
candidate was Goodstein in both cases. Turing's response to the paper in his
own words was that “The author's technique was hopelessly faulty, and his
work after about page 30 was based on so many erroneous notions as to be
quite hopeless”. The dissertation, which involved a development of
recursive analysis, including measure theory, was largely in error because
the ambiguity of the representation of real numbers as binary decimals had
been overlooked. It is all the more laudable that after this inauspicious start
to his mathematical research Goodstein recovered to be a distinguished
mathematician and teacher.

As has been well documented Goodstein was especially active in the
MA. He contributed some 70 notes and articles as well as hundreds of
reviews to the Mathematical Gazette which he sustained at a high academic
level during his editorship from 1956 to 1962. He was President of the
Association in 1975-76.

Goodstein wrote extensively and with great clarity. He was especially
adept at explaining difficult ideas. His Recursive number theory [1], for
example, is a complete introduction to early researches on recursive
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functions. His 1971 Development of mathematical logic is an excellent
overview of mathematical logic. His Gazette article, The Decision Problem,
(February 1957), is lucid and precise and his Presidential Address of April
1976 is a cogent summary of his research preoccupations. He was,
however, disappointed that his 1948 textbook, Mathematical Analysis,
which incorporated a distinctive approach to the ‘uniform calculus’, failed to
impress.

By all accounts Goodstein was an effective and enthusiastic teacher.
Many British logicians were influenced by him or had worked with him or
did research under his guidance. Many of his research students took up
posts in higher education. Clearly the mathematical world has been
enriched by his labours and the MA will be ever in his debt.
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Student Problems
Students up to the age of 19 are invited to send solutions to either of the

following problems to Stan Dolan, 126A Harpenden Road, St. Albans, Herts
AL3 6BZ.

Two prizes will be awarded – a first prize of £25, and a second prize of
£20 – to the senders of the most impressive solutions for either problem. It
is, therefore, not necessary to submit solutions to both. Solutions should
arrive by May 20th 2014. Please give your School year, the name and
address of your School or College, and the name of a teacher through whom
the award may be made. Please print your own name clearly! The names of
all successful solvers will be published in the July 2014 edition.

Problem 2014.1
The diagram shows a right-angled triangle and two isosceles triangles,

each formed from two copies of .
T

T

T

Let have inradius and let the two isosceles triangles have inradii
and . (The inradius is the radius of the largest circle that can be drawn
inside the triangle.)

T r r1
r2

Find and prove a simple relationship between ,  and .r r1 r2

Problem 2014.2
Suppose the factorial of one hundred is written in base 10 and the digits

are then read from right to left. How many zeroes will there be before a non-
zero digit is reached and what is that non-zero digit?

Solutions to 2013.5 and 2013.6
Both problems were solved by Liam Stigant (Portsmouth Grammar

School) and Iain Timmins (Wyggeston & Queen Elizabeth I College). 

Problem 2013.5
Given a positive integer , find a formula for the number of points in 4-

dimensional space whose coordinates are positive integers with a sum of at
most .

N

N

Solution
Liam and Iain gave similar solutions to this problem. A surprisingly

simple solution based upon their methods is to note that there is a 1-1
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Holmes + Moriarty = Mathematics
THOMAS DENCE

Introduction
In the autumn of 2011 the movie Sherlock Holmes: A Game of Shadows

appeared (see [1]). It was a sequel to the Holmes movie from two years
earlier. Unlike the first movie, A Game of Shadows Holmes' arch enemy
Professor Moriarty featured more prominently than Holmes himself.

One scene, in particular, has Holmes sizing up his opponent by making
a visit to Moriarty at his university office. But in the background sits
Moriarty's blackboard, filled completely with mathematical equations,
symbols, drawings, and formulas. One of these deserves our special
attention.

Background
According to the literature on Sir Arthur Conan Doyle we find James

Nolan Moriarty born in 1849 in Ireland, educated at home, and from early
on possessed remarkable mathematical skills. His graduation from
University College in Dublin in 1871 coincided with the publishing of his
famous mathematical work, A Treatise on the Binomial Theorem, which
enhanced his reputation and garnered him a teaching position at a small
university in Durham in northern England. Six years later he was, rather
surreptitiously, asked to leave with one probable reason being his growing
association with the more extreme elements in the Irish nationalist
movement as this faction sought to attain independence from British rule.
Moriarty moved to London in 1878 and found meagre employment as a
mathematics tutor to young British soldiers. This was a blow to Moriarty's
ego as a mathematician. Consequently his attention was refocused on the
Irish attempts to win independence by any means, legal or illegal. Here, his
mathematical skills were put to use by the Irish Republican Brotherhood,
known as the Fenians, because Moriarty became a creator of ciphers and a
breaker of codes [2]. The codes that the Fenians had been using were
simple Caesar cipher codes where letters were interchanged with others
located a fixed distance away in the alphabet. Unfortunately for the Irish
these codes were commonly broken by the British police. Under Moriarty's
mathematical super-vision, though, the new codes became fiendishly
complex.

Sometime around the later 1870s Sherlock Holmes turned his attention
to helping England investigate the widespread bombings and assassinations
that were presumably instigated by Irish nationalists. Apart from his private
cases involving, for instance, the ‘five orange pips’ and the ‘speckled band’,
we find in The Adventure of the Bruce-Partington Plans an episode dealing
with national security [3]. For the most part, though, the narratives of
Holmes' adventures, as written by his famous colleague Dr. Watson, failed

journals.cambridge.org/mag
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to mention much about his work in helping the British government's
continual battle against Irish nationalists. Holmes' brother Mycroft had been
studying the political scene for a number of years and was influential in
helping Sherlock get to the root of some of the terrorist's activity. We find
then, in late 1882, that the Holmes brothers first encounter the name
Moriarty while investigating the intricate politics of the Irish nationalists.

Holmes viewed himself as an expert on ciphers and codes. In The
Adventure of the Dancing Men, a story that featured messages in code,
Holmes says to Watson, “I am fairly familiar with all forms of secret
writing, and am myself the author of a trifling monograph upon the subject,
in which I analyse 160 separate ciphers.” Thus we find Holmes spending
considerable time trying to decode the communication of the Irish
nationalists that the police had intercepted. This proved difficult and
Holmes began to realise that the ciphers were the work of a mind of a
different calibre to those that had produced earlier codes.

By 1885 Holmes is obsessed with Moriarty, and has no doubt that he is
responsible for many of the bombings and killings that have happened in the
London area. To his friend Watson, Holmes utters the famous descriptive
lines, “He is the Napoleon of crime. He is the organiser of half that is evil
and of nearly all that is undetected in this great city.” Yet even as late as
1888 Holmes had never met Moriarty.

But in A Game of Shadows we witness Holmes finally paying a visit to
Moriarty in his university office, which really cannot be because Moriarty
no longer holds university status.

The Blackboard
The folks at Warner Brothers, who made the movie, wanted some sense

of authenticity to these scenes. They contacted OCCAM (the Oxford Centre
for Collaborative Applied Mathematics) and asked for mathematical help
[4]. They hired Professors Alain Goriely and Derek Moulton to devise some
mathematical writings for placement on Moriarty's blackboard that would
satisfy several criteria. It had to be mathematics that would be pertinent for
the time, and would be consistent with what Moriarty would have known
and would have worked on and used. The mathematics chosen was
essentially from two different areas.

On one hand the board contains numerous symbols, text, and partial
differential equations inherent to the study of celestial mechanics, in
particular the -body problem. This problem seeks to understand the
interaction, due to gravity, of bodies of mass in space. The rationale
behind this is that in The Valley of Fear Holmes mentions that Moriarty
authored the book The Dynamics of an Asteroid, and that the book was of
such high quality that “no man in the scientific press was capable of
criticising it.” In the top left corner of the blackboard Goriely and Moulton
have sketched two circles, one representing Earth and the other representing
the Sun, with ‘comets’ written between them (Figure 1).

n
n

journals.cambridge.org/mag
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FIGURE 1

The other mathematical area of interest on the board involves one of
Moriarty's schemes for coding messages. Goriely and Moulton decided to
connect this scheme with Pascal's triangle (also located on the board) which
was appropriate since Moriarty had written A Treatise on the Binomial
Theorem. Located under Pascal's triangle on the board is the recursively
defined Fibonacci-type sequence

Fp (n) = Fp (n − 1) + Fp (n − p − 1)
with if , and the recursion holds for all . The
integer is fixed, and stated initially, and represents a public key for the
coding scheme. In particular, for and we get the
following sequences:

Fp (n) = 1 n ≤ 1 n > 1
p

p = 0,  1,  2,  3 n > 1

p = 0 1, 2, 4, 8, 16, 32, 64, …
p = 1 1, 2, 3, 5, 8, 13, 21, 34, …
p = 2 1, 2, 3, 4, 6, 9, 13, 19, …
p = 3 1, 2, 3, 4, 5, 7, 10, 14, …

and we note here that the first sequence ( ) is merely the sum of the
terms in each row of Pascal's triangle. The second sequence ( ), which
is the Fibonacci sequence, is the sum of the terms on a first diagonal of
Pascal's triangle, as shown in Figure 3a.

p = 0
p = 1

journals.cambridge.org/mag
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1
1

235
8

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 …

12346

FIGURE 3a FIGURE 3b

The third sequence ( ) then represents the sum of the terms on a
second diagonal of Pascal’s triangle (Figure 3b), and the pattern continues
for . We can be a little more precise in describing how these
diagonals are constructed. First, we indicate that adjacent rows in the
triangle are one unit apart, and that adjacent terms in each row are two units
apart. For each given , each new diagonal starts with the leading 1 in each
row of the triangle. From that 1 we move units to the right, followed
by units up, and if that lands on a term in the triangle then that term gets
added to the 1; then we move another units to the right and units
up, and add again if we land on a term from the triangle. The pattern
continues.

p = 2

p ≥ 3

p
p + 2

p
p + 2 p

The mathematical link that provides an integral component to Moriarty's
code is stated as follows [4].

Theorem: Let and be defined as above. Given any integer
there exist unique non-negative integers , such that

, with .

p ≥ 0 Fp (n)
N > 1 n m
N = Fp (n) + m m < Fp (n − p)

Proof:
(existence)
case 1: Suppose  for some .  Then let  and .N = Fp(n) n m = 0 m < Fp(n − p)
case 2: Let be such that . Set

.  Then
n ≥ 1 Fp (n) < N < Fp (n + 1)

m = N − Fp (n)

N − Fp(n) < Fp(n + 1) − Fp(n) = Fp(n + 1 − (p + 1)) = Fp(n − p).

(uniqueness)
case 1: Assume for some , and suppose also that

with and .
Subtracting gives

N = Fp (n) n
N = Fp (n − k) + m m < Fp (n − k − p) k ≥ 1

m = Fp (n) − Fp (n − k)
= [Fp (n − 1) + Fp (n − 1 − p)] − Fp (n − k)
= [Fp (n − 2) + Fp (n − 2 − p)] + Fp (n − 1 − p) − Fp (n − k)
  …

journals.cambridge.org/mag
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= [Fp(n − k) + Fp(n − k − p)] + Fp(n − k − p + 1) − Fp(n − k − p + 2) +
… + Fp(n − k − p + (k − 1)) − Fp(n − k)

> Fp(n − k − p)
> m
which yields a contradiction.

case 2: Now suppose for some and . If
we also have with and ,
then , and simplifying as in case 1 yields

N = Fp(n) + m n 0 < m < Fp(n − k)
N = Fp(n − k) + m k ≥ 1 m < Fp(n − p − k)

Fp(n) + m = Fp(n − k) + m

Fp(n − k − p) + Fp(n − k − p + 1) +  …  + Fp(n − k − p + (k − 1)) + m = m


             and this implies  which is a contradiction.Fp (n − k − p) < m

With this information, Moriarty is able to represent any two-digit
number as a unique pair of integers , and these in turn are
represented by specific terms in the corresponding Fibonacci-type sequence.
Consider the following example where and the Fibonacci-type
sequence is 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, … .

N < 100 n m

p = 3

N = F3 (n) + m = F3 (n) + F3 (n1) A Representation
6 = 5 + 1 = F3 (5) + F3 (1) 0501
7 = 7 + 0 = F3 (6) 06

12 = 10 + 2 = F3 (7) + F3 (2) 0702
18 = 14 + 4 = F3 (8) + F3 (4) 0804
36 = 26 + 10 = F3 (10) + F3 (7) 1007

Note that commutativity would allow the representation to be just as
easily written 0105, 06, 0207, 0408, or 0710. Consider, though, what
happens when , for then , but is not
one of the terms in the sequence. But we can write

, which means , and its representation
is then 090501 (or 090105 or 010509).

N = 25 25 = 19 + 6 = F3(9) + m m = 6
F3 (n) 6 = 5 + 1 =

F3(5) + F3(1) 25 = F3(9) + F3(5) + F3(1)

Armed with this representation, Moriarty pulls out his favourite book (a
second, but private key) and proceeds to extract the necessary characters
from the book, noting their page number, line number, and character
position (we count blank spaces and punctuation) in the line. It's possible
that Moriarty could have chosen Alice in Wonderland as his favourite book
because he personally knew Charles Dodgson (who, incidentally, had been
Mycroft's mathematics tutor at Christ Church college), though he didn't
think much of Dodgson as a mathematician [2]. Selecting letters from Alice
might have been a means to throw Holmes off his tail. Finally, then,
Moriarty has decided Holmes is too much of a threat, and wishes to instruct
his number one henchman, Colonel Sebastian Moran, to dispose of Holmes.

journals.cambridge.org/mag
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He sends Moran (who possesses a copy of the book) the message
KILL  HOLMES

by constructing the code taken from pages 12, 25 in Alice as follows.

Page Line Text
12 06 Hmmm, what day is it?

07 It's Tuesday
08 Tsk, tsk, two days wrong!  I told you not …

25 12 Look out, five! You're splashing the paint
13 all over me!

The ten letters chosen are indicated in bold. Moriarty would therefore have
constructed the following table of values:

Page Line Character Representation
K 12 8 8 0702 0601 0601
I 12 6 16 0702 0501 0802
L 12 8 31 0702 0601 1005
L 25 12 1 090501 0702 01
H 12 6 1 0702 0501 01
O 12 8 22 0702 0601 0903
L 25 13 3 090501 0703 03
M 25 13 10 090501 0703 07
E 12 7 8 0702 06 0601
S 25 12 24 090501 0702 0905 

To make matters even more complicated, Moriarty would have
combined the representations for the L, M in ‘Holmes’ since their characters
were taken from the same line on the same page, and he would have written
that information as

090501 0703 03 07.
Finally, the message, in code, that Moriarty sends to Moran is

0702 0601 0601
0702 0501 0802
0702 0601 1005
090501 0702 01
0702 0501 01
0702 0601 0903
090501 0703 03 07
0702 06 0601
090501 0702 0905

journals.cambridge.org/mag
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although, as mentioned earlier, he may wish to commute some of the digits
and, perhaps, rewrite the first line, say, as  0207 0106 0601.

Conclusion
Much credit for the inspiration of this work goes to Goriely and

Moulton for constructing such an intricate scenario. Portions of the above
work differ slightly from what they had, but the hope is that it will still
appeal to all Holmes lovers. It is truly unfortunate that so little of this made
it to the movie screen. In the brief span of time that the blackboard
appeared one was lucky to have had time to focus in on Pascal's triangle.
But that's Hollywood.
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Notes
98.01 On Fibonacci numbers that are factorials
Introduction

The Fibonacci number, denoted by , is defined by way of the
recurrence relation for , with initial values

. Let denote the set of Fibonacci numbers, and let be
some other set of positive integers. If is an infinite set, we might ask
whether or not contains an infinitude of elements. In other words,
do infinitely many elements of appear in ? Furthermore, should
contain only finitely many elements, we might ask for a list of those
elements appearing in this intersection.

n th Fn
Fn = Fn − 1 + Fn − 2 n ≥ 3

F1 = F2 = 1 F S
S

F ∩ S
S F F ∩ S

Let us consider, for example, the situation in which
, the set of non-zero square numbers. It is known in

this case that is finite [1]. In fact, it is shown in [1] that the only
squares appearing in the Fibonacci sequence are and

. By way of another example, let denote the set of perfect
numbers. Although it is not known whether or not there are infinitely many
perfect numbers, it has in fact been proved that  [2, 3].

S = {1,4,9,16, … }
F ∩ S

F1 = F2 = 1
F12 = 144 S

F ∩ S = ∅
In this article we look at the case in which is the set of factorials. In

Theorem 1.1 of [4] a list is given (with proof) of the only factorials that can
be expressed as the sum of at most three Fibonacci numbers. Of these, the
only ones for which the sum comprises just one Fibonacci number are

and . This of course implies that , and
are the only Fibonacci numbers that are factorials, and the answers to our
questions in this case thus follow as a corollary to Theorem 1.1 of [4].
However, this theorem is certainly not straightforward to prove, and our aim
here is to provide a relatively simple proof of the fact that, for any ,
is not a factorial.

S

0! = 1! = F1 = F2 2! = F3 F1 F2 F3

n ≥ 4 Fn

Some preliminaries
In this section a number of results that will be used in the proof of the

theorem are gathered together. First, we obtain the following very
straightforward result.

Result 1:  for all positive integers .Fn < (n − 1)! n ≥ 4

Proof:  This result is proved by induction on .  First, we haven

F4 = 3 < 6 = 3! = (4 − 1)!
and

F5 = 5 < 24 = 4! = (5 − 1)! ,
so the statement of the result is certainly true for  and .n = 4 n = 5

Let us now assume that and for some
.  Then, by way of the inductive hypothesis,

Fn < (n − 1)! Fn + 1 < n!
n ≥ 4

journals.cambridge.org/mag
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Fn + Fn − 1 < (n − 1)! + n!
and hence

Fn + 2 < (n + 1) (n − 1)! .
Since, for , it is the case thatn > 1

(n + 1) (n − 1)! < n (n + 1) (n − 1)! = (n + 1)! ,
we see that , thereby completing the proof.Fn + 2 < (n + 1)!

We shall also make use of the following result, which appears in [5],
noting that an alternative derivation of this (stated in a slightly different
form) is given in [6].

Result 2: Let denote any prime number such that . If
 then , while if  then .

p p ≠ 5
p ≡ ±1 (mod 5) p | Fp − 1 p ≡ ±2 (mod 5) p | Fp + 1

For example, and ,
while  and .

11 ≡ 1 (mod 5) F11 − 1 = F10 = 55 = 5 × 11
13 ≡ −2 (mod 5) F13 + 1 = F14 = 377 = 29 × 13
Finally, we will have cause to utilise Carmichael's theorem on

Fibonacci numbers [7, 8, 9]. This provides us with useful information
concerning the prime factors of Fibonacci numbers, and may be stated as
follows.

Result 3: Let be a positive integer such that . Then has
at least one prime factor that does not divide any earlier Fibonacci number.

n n ∉ {1,2,6,12} Fn

By way of an illustration of this result, let us consider
. Examining the prime factors in turn, we note

that 3 is a factor of and 7 is a factor of , but 47 does not appear
as a factor of  for any .

F16 = 987 = 3 × 7 × 47
F4 F8 = 21

Fn n ≤ 15

Proof of the theorem
We are now in a position to provide a relatively simple proof of our

main result.

Theorem 1:  is not a factorial for any .Fn n ≥ 4

Proof: This will be proved by way of a contradiction. To this end, suppose
that for some and . Result 1 tells us in this case that

, and hence . This in turn implies that
.

Fn = k! n ≥ 4 k ∈ n
(n − 1)! > Fn (n − 1)! > k!
n − 1 > k

Let denote the prime number (so that , , ,
and so on). It is clear that there exist two consecutive prime numbers and

, say, such that . The set
thus comprises all the prime numbers less than or equal to . From this it
follows that the set of prime factors of , and hence, by assumption, of ,

pj j th p1 = 2 p2 = 3 p3 = 5
pm

pm + 1 pm ≤ k < pm + 1 P (m) = {p1, p2, … , pm}
k

k! Fn

journals.cambridge.org/mag
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corresponds precisely to . By the Fundamental Theorem of Arithmetic
[10], we are therefore able to express  as:

P (m)
Fn

Fn = pa1
1 × pa2

2 ×  …  × pam
m

for some -tuple  of positive integers.m (a1, a2, … , am)
Since and , we have . It follows from

this that for all positive integers such that
. Thus, when , it is the case that for

all .

n − 1 > k k ≥ pm n > pm + 1
n > pi + 1 > pi − 1 i

1 ≤ i ≤ m n ≥ 4 Fn > Fpi + 1 > Fpi − 1
1 ≤ i ≤ m
Next, noting that neither of or are factorials, it must be

the case that . From Result 2 we know that, so long as , either
or , while for the special case we have .

Thus, by virtue of the fact that and , every
prime factor of divides an earlier Fibonacci number. On the other hand,
from Result 3 (Carmichael's theorem), we know that, apart from , ,
and , every Fibonacci number has at least one prime factor that does not
divide any of the previous Fibonacci numbers. Now, neither of or

are factorials, so it must be the case that has at least one prime
factor that does not divide any of the earlier Fibonacci numbers. This
provides us with our contradiction, thereby completing the proof of the
theorem.

F4 = 3 F5 = 5
n ≥ 6 i ≠ 3

pi | Fpi − 1 pi | Fpi + 1 i = 3 5 | F5
Fn > Fpi + 1 > Fpi − 1 Fn > 5

Fn
F1 F2 F6

F12
F6 = 8

F12 = 144 Fn

It follows from Theorem 1 that, in order to ascertain which Fibonacci
numbers are factorials, it remains simply to consider , and . As
mentioned in the introduction, each of these is in fact a factorial.

F1 F2 F3
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98.02 On integer triangles
In this note, we derive a method for classifying all integer triangles

containing an angle whose cosine is known. The term ‘integer triangle’ is
taken to mean a triangle each of whose sides is an integer. We start off by
considering such an integer triangle with sides and we shall use the
convention that it is the angle opposite whose cosine is known. Denoting
the value of this cosine by  we see that

T a, b, c
c

k

k =
a2 + b2 − c2

2ab
which may be rewritten in the form

1 − k =
(c + a − b) (c + b − a)

2ab
.

Putting  we now haveκ = 2 (1 − k)

κ =
(c + a − b) (c + b − a)

ab
. (1)

Since , we see that . Furthermore, the fact that
 are integers implies that both  and  are rational.
−1 < k < 1 0 < κ < 4

a, b, c k κ

Definition 1: The set is called a -pair if are both rational with
,  and .

{α, β} κ α, β
α > 0 β > 0 αβ = κ

Lemma 1: Let be the integer triangle defined above. Then the following
porperties hold.

T

(i)  is associated in a canonical way with a -pair .T κ {α, β}
(ii) Any integer triangle similar to will be associated with the

same -pair .
T

κ {α, β}
(iii) Interchanging  and  leaves the -pair  unchanged.a b κ {α, β}

Proof:

(i) Put  and . (2)
(c + b − a)

a
= α

(c + a − b)
b

= β

Then ,  are both rational, ,  and, from (1), .α β α > 0 β > 0 αβ = κ
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Problem Corner
Solutions are invited to the following problems. They should be

addressed to Nick Lord at Tonbridge School, Tonbridge, Kent TN9 1JP
(e-mail: njl@tonbridge-school.org) and should arrive not later than 10
December 2013.

Proposals for problems are equally welcome. They should also be sent
to Nick Lord at the above address and should be accompanied by solutions
and any relevant background information.

97.E (Michael Fox)
The point lies inside an equilateral triangle with

and . The line meets at . Determine the size of
.

P ABC ∠APB = 162°
∠APC = 114° AP BC D

∠ADC

97.F (Stan Dolan)
A board game involves two players taking turns to move. A draw is not

possible and the eventual winner receives a fixed stake from their opponent.
Either player, before their turn, can claim the stake immediately, unless their
opponent agrees to the stake being doubled in value. If this doubling is
accepted then only the player who accepted it can offer the next double.

During a game, you have just been offered a double. You calculate that
your probability of winning would be if the game were played out to
completion. What is the least possible value of that could make accepting
the double correct in terms of the expected gain/loss from this particular
game?

p
p

97.G (Jeremy D. King)
A polynomial graph crosses the -axis at and , remaining above it in

between, with a single maximum point. Let be the midpoint of and .
A current A-level textbook asserts that if the area from to exceeds the
area from to then the maximum point lies strictly between and .
Find a counterexample of minimal degree, proving that no polynomial of
smaller degree will work.

x A B
M A B

A M
M B A M

See the solution to the problem at journals.cambridge.org/trial_MAG

Problem 2.
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The Steiner-Lehmus angle-bisector theorem
JOHN CONWAY and ALEX RYBA

1. Introduction
In 1840 C. L. Lehmus sent the following problem to Charles Sturm: ‘If

two angle bisectors of a triangle have equal length, is the triangle necessarily
isosceles?'’ The answer is ‘yes’, and indeed we have the reverse-
comparison theorem: Of two unequal angles, the larger has the shorter
bisector (see [1, 2]).

Sturm passed the problem on to other mathematicians, in particular to
the great Swiss geometer Jakob Steiner, who provided a proof. In this paper
we give several proofs and discuss the old query: ‘Is there a direct proof?’
before suggesting that this is no longer the right question to ask.

We go on to discuss all cases when an angle bisector (internal or
external) of some angle is equal to one of another.

2. The schizoid scissors − an indirect proof
A

B

C
X

Y

A′

γ

B′
β

αα

ββ

FIGURE 1: The Schizoid Scissors

The following proof is simplified from one in Coxeter and Greitzer's
Geometry revisited [1]. We find our vivid title helps us to recall both the
construction and the proof.
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Suppose that one of the bisected angles and of triangle , say the
one above, at , is strictly larger than the one below, at , as in
Figure 1. Then we can cut off a proper part of size from the angle bisector

towards the side . This yields the shaded ‘scissors’ of the figure,
whose cutting edges are the equal angle bisectors. Then the blades above
and below, namely the triangles and share an angle at and
have another angle at or and so are similar. We easily reach two
opposite conclusions!

A B ABC
2α A 2β B

β
AA′ AC

AA′X BB′X γ X
β A B

On the one hand, the blade above is clearly smaller that the one below
since is opposite the smaller angle and opposite the larger one

in the triangle that they span. (Note that this proves
 giving the reverse-comparison theorem.)

AX 2β BX
α + β ABX
AA′ < BB′ < BY

On the other hand, the blade above is larger than the one below because
, the former being a complete bisector and the latter only a proper

part of one. (Note that this is the first time we have used the hypothesis that
the bisectors are equal.)

AA′ > BB′

This contradiction shows the bisected angles cannot be different, and so
proves the theorem. However, this synthetic proof is blatantly indirect.
Before discussing the directness question, we give a simple algebraic proof.

3. An algebraic proof
Let the lengths of the three bisectors be . Then it is not too hard

to see that 
ya, yb, yc

y2
a = bc {1 − ( a

b + c)2}
and from this some tedious algebra tells us that

(a + c)2(b + c)2(y2
a − y2

b) = c(b − a)(a + b + c){(a + b + c)(c2 + ab) + 2abc}.
In this the factor

(a + b + c) (c2 + ab) + 2abc
cannot vanish, proving the theorem. Also if , then , proving
the Comparison Theorem.

b > a ya > yb

Coxeter and Greitzer mention the algebraic proof and say that ‘Several
allegedly direct proofs have been proposed, but each of them is really an
indirect proof in disguise.’ It is clear from these words that they regard this
algebraic proof as indirect. We now restrict ourselves to the question of
whether there can be a direct proof.  First we show that:

4. There cannot be a direct proof …
We define a process called extraversion (‘turning inside out’) of a

triangle. Extraversion is a smooth process that transforms a triangle into its
mirror image as in Figure 2, in which we have taken the edge which
joins the two bisected angles (the joining edge) as base.

AB
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We start by moving and towards each other as hinted at by the bold
arrows, then they pass through each other and continue until they form the
reflected triangle. The numbers and smoothly vary but return to their
initial positive values since they never pass through 0. However,
decreases uniformly, passing through zero and finishing at . In a similar
way we can find what happens to the angles. When passes through 0 so
does , and ends at , while  and  become their supplements.

A B

a b
c

−c
c

C −C A B

A AB B

C C

a ab b

c

extraverts to

−c

FIGURE 2:  Extraverting the joining edge

Summary: -extraversion replaces:c
 by  and  by a, b, c a, b, −c A, B, C π − A, π − B, −C

A ABB

C C

through to

FIGURE 3:  Snapshot as  passes through  so  passes through 0B A C

Figure 3 is a snapshot of what happens as passes from being small and
positive to being small and negative. The internal bisectors at the ends
and of the joining edge pass smoothly to external bisectors, while the
bisector at  stays internal.

c
A

B
C

The direct proofs of various theorems about angle bisectors extravert to
corresponding proofs of similar theorems in which some internal bisectors
have been swapped with external ones. For instance, the proof that three
internal bisectors meet (at an incentre) becomes a proof that one internal and
two external bisectors meet (at an excentre). However we shall see later that
no proof of the Steiner-Lehmus theorem can survive all such extraversions*.
Under -extraversion, our formula for  becomes the following:b y2

a − y2
b

(a + c)2(c − b)2(x2
a − y2

b) = −c(a + b)(a − b + c){(a − b + c)(c2 − ab) − 2abc}
where is the length of the external bisector segment for the angle at .
However, this does not prove that ; now the sign of has

xa A
a + b = 0 b

* J.H.C. confesses to having made stronger assertions that now seem unjustified.

journals.cambridge.org/mag
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changed we can have:

(a − b + c) (c2 − ab) − 2abc = 0.

A

B

C
q

q

FIGURE 4:  The inequilateral triangle

Indeed, the slanting external bisectors of the triangle in Figure 4 with sides
1, 1 and are times as long as the vertical one. So if is

the acute angle satisfying , namely
, it has three bisectors (one internal and two external) of equal

length, and so if Steiner-Lehmus survived extraversion, it would be
equilateral. However, clearly it isn't − we call it the inequilateral triangle (it
has angles of ,  and  degrees).

−2 cos 2θ
−2 cos 2θ

sin 3θ
θ

sin 3θ + 2 cos 2θ = 0 sin−1 17 − 1
4

≈ 51.332°

77.336… 77.336… 25.328…

5. … or can there?
However, some proofs that don't survive extraversion have been

considered direct. We have already remarked for instance that the algebraic
proof might be considered direct. Here we consider some other plausibly
direct proofs.

The schizoid scissors proof shows that both
above < below  and above > below,

where above and below are any two corresponding edges of the scissor
blades. Everybody will agree that use of this blatant contradiction makes
the proof indirect.

But it is surely a positive statement that for any two lengths above and
below we have either

  orabove ≤ below above ≥ below.
Now if in the scissors proof we replace ‘<’ and ‘>’ by ‘≤’ and ‘≥’ and make
a similar replacement of ‘proper part’ by ‘part or whole’, this modifies the
proof to show that both

  and ,above ≤ below above ≥ below
which is no longer a contradiction, but a seemingly direct proof that

above = below.
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6. The direct proof that was there all along

A B

C

o

D
E

F

O

α
α

β

β
β

φ

θ

θ

FIGURE 5:  Hesse's construction

Just pOSSibly F. G. Hesse was one of the mathematicians that Sturm
wrote to in 1840. In any case he produced the following proof by 1842. It
uses the now generally forgotten fact (criterion OSS in the Appendix) that
two triangles are congruent if they agree at two pairs of corresponding sides
and a pair of corresponding non-included but obtuse angles.

In Figure 5 we picture Hesse's construction using some multiply-ruled
lines. Letting and be the (1-ruled) equal angle bisectors in triangle

, Hesse constructs a 3, 2 and 1-ruled triangle congruent to the
similarly ruled triangle with and on opposite sides of . The
proof will show that the 3 and 2-ruled quadrilateral is a
parallelogram.

AD BE
ABC ADF

EBA B F AD
ABDF

We let be the intersection of the two bisectors. Then the angle at
of the triangle is the supplement of . Now, because is
less than 2 right angles, is less than 1 right angle and so is obtuse.
Since it is the external angle of both the triangles  and  we have:

O o O
OAB α + β 2α + 2β

α + β o
OAE OBD

o = α + θ = β + φ.
The forgotten fact now shows that is a parallelogram, since its (0-

ruled!) diagonal divides it into two 3, 2, 0-ruled triangles that share this
diagonal, and have two equal sides and and the obtuse angle at
corresponding vertices  and .

ABDF
BF

AB DF o
A D

Now by Hesse's construction equals which equals from the
parallelogram so the triangles and are congruent, showing that

, and so  is isosceles.

AE AF BD
ABE BAD

2α = 2β ABC
We find it surprising that in Coxeter's long life (9 February, 1907 −

31 March, 2003) he does not seem to have commented on this proof, which
in our opinion is the most ‘direct’ one.
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7. External S-L theorems?
In the usual discussions of the Steiner-Lehmus theorem it is often

supposed tacitly that angle bisectors are internal. If they are both external,
there are three possible cases (MAX, MID, MIN), distinguished by whether

is the maximal, middle, or minimal one of the three angles (or
equivalently whether is the maximal, middle, or minimal one of the three
edges), illustrated in Figure 6. (The switch between these cases is when
equals or because then the external or bisector is parallel to the
opposite side.)

C
c

C
A B B A

A

B

C

Case MAX: Theorem
true by scissor proof

Case MID: Theorem
false

Case MIN: Theorem true;
needs new proof

A

B

C

A

BC

FIGURE 6:  The three cases

7.1 Case MAX: The backward external S-L theorem
In this case, the two given bisector segments point backward (from the

joining edge into the half-plane containing ). The theorem and scissors
proof remain valid, provided that all inequalities are reversed. We suppose

as in Figure 7, so that we can choose between and to make
the angle equal . Then for the two similar triangles and ,
we reach two opposite conclusions (as in the internal case, but now with
reversed inequalities).

AB C

α > β X A′ C
A′AX β AXA′ BXB′

A

B

CX

Y

A′

B′

α

β

β
β

γ

γ

FIGURE 7:  Case MAX:Backward Bisectors

In the triangle , is opposite the larger angle while is
opposite the smaller one so is bigger. On the other hand,

so is bigger. The comparison theorem in this case
is that the larger exterior angle has the longer bisector.

AXB AX π − 2β BX
π − α − β AXA′

AA′ = BY < BB′ BXB′
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7.2 Case MID: The non-theorem
When is between the two other angles, one external bisector is

forward and the other backward. In this case, the theorem fails, a famous
counterexample having been found by Oene Bottema.

C

12

12

1212

132
48

48

D C

A B

E

84 72

24

A

A

B

B

C

C

D

(a) Bottema's integral
triangle

(b) The extra integral
triangle

(c) The 30-30-120
Triangle with four
equal bisectors

FIGURE 8:  Integral triangles

There is in fact just a 1-parameter family of counter-examples −
‘Bottema's variable triangles’.  The equation that governs these is

(a + b − c) (c2 + ab) − 2abc = 0,
in which the left-hand side is found by -extraverting the displayed formula
from Section 3.  In trigonometric form this becomes

c

sin 5
4 (A + B) cos 1

4 (A − B) = sin 1
4 (A + B) cos 3

4 (A − B)
or equivalently

sin2 (A − B
4 ) = cos2 (A + B

4 ) 4 sin2 (A + B
4 ) − 1 .

The last form shows that for each value of (or equivalently ), there
is a unique value of (or equivalently the pair ). This means
that if , that is , there is a unique triangle for
which the theorem fails. (Really this triangle is only unique up to
interchange of and , but we shall abuse the word ‘unique’ in this sense
whenever convenient.)

C A + B
|A − B| {A, B}

4 sin2 (1
4 (A + B)) ≥ 1 C ≤ 60°

A B

One obvious solution to the first trigonometric form of the equation has
and , yielding , and

. This is Bottema's triangle, or more specifically Bottema's
integral triangle, because its angles are integral in degrees. In it, the
external bisectors at and have the same length as the joining edge, as is
evident from the indicated isosceles triangles in Figure 8(a).

5
4 (A + B) = 180° 3

4 (A − B) = 90° A = 132° B = 12°
C = 36°

A B
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0

12

24

36

48

60

72

84

96

108

120

132

144

156

168

180

0

12

24

36

48

60

72

84

96

108

120

132

144

156

168

180

C = 0

A B

MAXMAX

MIDMID

MINMIN

C = 180

FIGURE 9:  The triangle of triangles

7.3 The triangle of triangles
In our ‘triangle of triangles’, Figure 9, each point corresponds to a triple

of numbers , and that add to , and so to a shape of triangle. In the
figure, is constant on downward sloping lines, on upward sloping ones,
and  on horizontals.  Isosceles triangles lie along the medians.

A B C 180
A B

C
The approximately circular arc in the lower part of the figure contains

Bottema's variable triangles and the lowest marked points on it are
Bottema's integral triangle (and its - reflection). Above the Bottema
curve the comparison theorem is direct (the larger bisector bisects the larger
angle). Below it the comparison theorem is reversing (as in the internal
case).

A B

By - and -extraverting the equation of the Bottema curve we obtain
the equations

a b

  and ,(a − b + c)(c2 − ab) − 2abc = 0 (a − b − c)(c2 − ab) + 2abc = 0
for the two other curves of the figure, corresponding to triangles for which
an internal bisector of either or is equal to an external bisector of the
other.

A B

Working upwards on either of these extraverted curves, we find that
after narrowly missing the Bottema integral triangle it crosses the Bottema
curve at a marked point corresponding to a triangle for which the external
bisector at one of and is equal to both bisectors at the other. (The
squares of the sides of such a triangle are proportional to 1, and , where

.)

A B
σ5 σ

σ = 1
2 ( 5 − 1)
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It then passes through a marked point corresponding to another triangle
with integral angles, the ‘extra integral triangle’. This is analogous to
Bottema's, with bisected angles of and . Again the equal bisectors
have the same length as the joining edge, see Figure 8(b).

24° 84°

The next marked point (on a median) is our inequilateral triangle, with
three equal bisectors, and the last one (on both extraverted curves and the
vertical median) corresponds to the 30, 30, 120 triangle, which has four
equal bisectors (Figure 8(c)).

7.4 Case MIN: The forward external S-L theorem

A

BC X

Y

A

BCX

Y

A′

A′

B′

B′

αα β
β

β

α

β

γ

α

β
β

γ

FIGURE 10:  The MIN case diagram changes as  passes infinityX

In this case, the usual scissor diagram takes two forms according to
where the point lies on the line . In the upper part of Figure 10 (where

is to the right of ) the proof for the internal case continues to work
without changing a word.  In particular the comparison theorem is reversing.

X BC
X B

However, in the bottom part, has ‘passed infinity’ to reappear at the
left of . Now the scissor proof argument fails because it gives
and  which do not contradict the equality .

X
C AA′ > BB′

BY > BB′ AA′ = BY
The boundary between the two cases is given by , the

dashed line in the triangle of triangles. The scissor proof works only below
this line, however the theorem continues to hold on and above this dashed
line by the following continuity argument.

2C = |A − B|

The triangle of triangles is divided into six triangular parts by its
medians; inside any one of these the bisector lengths change continuously.
So unless a path between two points in the same part crosses the Bottema
curve, the triangles they represent must have the same comparison status
(reversed or not). Since the Bottema curve lies entirely in the MID parts,
this implies the comparison status is reversing everywhere in the MIN parts
and direct in the MAX parts.
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8. Conclusion
Our friend Richard Parker says that a significant mathematical assertion

can be regarded as a definition of the one word you do not know in terms of
the ones you do. Parker's principle suggests that when a proof of the
Steiner-Lehmus theorem is described as direct, this merely tells us how the
author is using the term ‘direct’. More than 170 years of discussion has
taught us only that there is no agreed meaning to this term. The directness
question is therefore outmoded and we should ask instead whether and
where proofs involve inequalities as the extraversion argument suggests they
will.

Hesse's proof does so ( is obtuse), as does the algebraic proof (
are positive), the scissors proofs (blatantly); so too do all proofs in Sherri
Gardner's recent collection [3].

o a, b, c

Our first proof makes no attempt to be direct: we call it the strictly-
schizoid proof and, whether direct or not, the second proof certainly remains
schizoid, so we call it the still-schizoid proof. Since it seems that every
proof must involve inequalities, we are inclined to disquote George Orwell:

all proofs are inequal, but some are more inequal than others.

Appendix:   Some forgotten facts
Students are warned not to be ASSes by using the ASS condition in

which the angle is not included between the two sides, since this can fail as
in the first part of Figure 11, which shows that there two such triangles can
be different. The forgotten fact used by Hesse is that a deduction is still
pOSSible when the given angle is obtuse (the OSS criterion).
ASS does not suffice:
Given angle , side  and radius PQR PQ q

 both workR, R′

OSS does:
Given obtuse angle , side  and radius PQR PQ q

 works,  failsR R′

q qr
P

Q RR′

qq
r

P

Q RR′

ASL does:
Given angle , side  and larger radius PQR PQ q ≥ r

 works,  failsR R′

R′

q qr

P

Q R

SSR does:
Given right angle , side  and radius PQR PQ q

 yield congruent trianglesR, R′

R′

q q
r

P

Q R

FIGURE 11:  When do two sides and a non-included angle imply congruence?

The SSR case of two sides and a non-included right angle is still taught,
so we call it the ‘claSSRoom’ criterion. It is interesting that this criterion
with a right angle does not specialize either the acute ASS case (being valid)
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or the obtuse OSS one (since it permits two triangles, but these are
congruent).

Figure 11 finishes with a short and simple condition that covers all valid
cases* of ASS (two sides and a non-included angle), see also [4]. This is the
ASL criterion, standing for ‘Angle, Side, Longer (or equal) side’, meaning
that the given angle is opposite the longer of the two sides. Here ‘longer’ is
to be interpreted so as to include equality. Our name for this is the
‘ULTRASLICK’ criterion, in which the middle-sized ‘I’ hints at the
inclusive interpretation of ‘longer’.

To include SAS along with these, we should use the ABLE condition −
that (the given) Angle Belongs to a Longest Edge (of the two given ones) −
note the inclusive sense. This covers absolutely all cases in which one is
ABLE to deduce congruence from two sides and an angle!
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squares, enumeration and combinatorial set theory. A problem faced by any such
account is that of striking a balance between exposition − explaining to a lay reader
what the principal concepts and results are and what methods were employed in their
investigation − and the strictly historical question of placing these developments in
the context of the history of the subject as a whole and deciding who discovered
what when. Another major issue is that of notation and terminology: how much
should old research be viewed through the prism of modern usage? The authors in
this volume cope with these issues in different ways, but as a whole the narrative
reads lucidly and there is an extensive bibliography at the end of each chapter so that
interested readers can pursue particular topics as they wish.

Inevitably we encounter many cases of mistaken attribution. Both Hamiltonian
cycles and Steiner triple systems, for example, were studied by Thomas Kirkman
before anyone else, but he did not receive the credit for either. Combinatorial
questions also have a remarkable longevity, and keep on ‘coming back for more’ in
terms of increasing refinement. The four colour problem is one whose roots go back
to 1852 and which stimulated research from many ‘amateur’ mathematicians such as
Alfred Kempe, whose wonderful flawed proof contained features used in the
eventual (and controversial) solution by Appel and Haken in 1977. The technique of
generating functions is another perennial, used with great ingenuity by Euler in the
study of partitions and by Nicholson for enumeration, but still inspiring new research
by Hardy and Ramanujan in 1918. Much progress in combinatorics was stimulated
by the design of statistical experiments, particularly in agriculture, but the ideas
employed first appeared in puzzles such as Kirkman's schoolgirls problem which
appeared ‘versified by a lady’ in the Educational Times of 1870. Latin squares also
have a very long history; indeed, the cover of the book is an illustration from the
Scientific American of two orthogonal squares of order 10, which were also used, we
are told, as the design for a needlepoint rug. Maybe the oddest appearance of any
combinatorial object is the knight's tour through this array which is subject of
Georges Perec's novel La Vie Mode d'Emploi. In the twentieth century there was
renewed interest in finite sets, and particularly matters relating to their intersections,
unions and orderings. One of the offshoots of this was the work of Frank Ramsey,
who died tragically young in 1930, but whose seminal investigation of non-chaotic
behaviour in random structures supplied a spur to further research to
combinatorialists such as Paul Erdös.

A final chapter by Peter Cameron gives a quick overview of recent developments
in combinatorics and reflects on how it is likely to develop. The subject, now at the
forefront of much significant research, has links with group theory, mathematical
logic, computer science, number theory, coding theory and algebraic geometry, as
well as practical implications for the Human Genome Project and the unification of
physics. He ends with a proposal that the basic currency of the universe may not be
space and time but information measured in bits, suggesting that the ‘theory of
everything’ may turn out to be combinatorial.

The book is beautifully illustrated with portraits of the leading contributors,
reproductions of frontispieces from their books and a plethora of diagrams, both
from original sources and specially drawn for the text. This fascinating survey of the
history of an important area in mathematical thought deserves a place in every
respectable library.

GERRY LEVERSHA
15, Maunder Road, Hanwell, London W7 3PN

REVIEWS 381

through the background in Diophantine equations, Pythagorean triples, the
connection with elliptic curves and the related, easier-to-understand Tunnell's
criterion. Unfortunately the arithmetic on page 246 is wrong, which is frustrating for
someone trying to follow the early development.

As for the Hodge conjecture, the story as told here will only make sense to those
who have had some active involvement with some of the very abstract concepts
involved. Even a populariser as skilful and knowledgeable as Stewart has met his
match here, and by this stage the author's banter and chatter is less helpful and more
irritating.

This is not quite the end: there are five pages of speculation on the nature of
mathematics and its likely future, followed by a few paragraphs on each of the
twelve open problems. These are all much easier to understand (at least in their
statements) than most of the rest. Some may become ‘big’, ‘important’ problems, or
just get settled easily and become historical novelties. No one knows.

JOHN BAYLIS
Yr Ystablau, Wiston, Haverfordwest  SA62 4PN

Combinatorics: ancient and modern, edited by Robin Wilson and John J. Watkins.
Pp. 381. £55. hardcover. 2013, ISBN 978-0-19-965659-2 (Oxford University Press).

The history of mathematics is now an established and highly-regarded discipline
and has prompted scholarly research into most areas of the subject, but combinatorics
has, for some reason, been rather ignored. This book aims to redress the balance and
presents, for the first time, a survey of the history of the field which is accessible to
the general reader. Individual chapters have been contributed by a group of sixteen
experts which include Eberhard Knobloch, AWF Edwards, Robin Wilson, Norman
Biggs, Keith Lloyd and Ian Anderson. In addition, the distinguished computer
scientist Donald Knuth presents an introductory overview of two thousand years of
combinatorial investigation from ancient China to the present day.

Accordingly, the first half of the book is organised on historical principles, with
sections on Indian, Chinese, Islamic and Jewish combinatorics and also the
development of the subject in Europe from the Renaissance to the 17th century. It
soon becomes evident that, during most of this time, combinatorics was not regarded
as an area of study in its own right but was subsumed under arithmetic or algebra.
Indeed, much earlier work was tied to particular problems such as enumerating the
hexagrams in the I Ching, counting metrical patterns in Sanskrit prosody and classical
Greek poetry and tabulating the possible combinations of theological concepts in the
work of Ramon Llull, the Catalan poet and mystic. The work of the French friar
Marin Mersenne led to consideration of partitions and to rules for calculating the
number of permutations, arrangements and combinations of musical notes, both with
and without repetition. Magic squares were, of course, well-known to artists like
Durer and the ‘arithmetical triangle’, nowadays attributed to Pascal, had appeared
long before his time in manuscripts from ancient India, China and Persia.

The subject begins to take a recognisable form in the 18th century as a result of
the work of the Bernoullis, de Montmort, de Moivre and Stirling. Much of this was
prompted by the investigation of games of chance, and there is a famous exchange of
letters between Fermat and Pascal which can be said to initiate the modern study of
probability. In addition, James Stirling studied infinite series and Leonhard Euler
related the Königsberg bridge puzzle to a ‘geometry of position’ which would
eventually become part of graph theory. Accordingly the second half of the volume
is devoted to ‘modern combinatorics’ and is divided along disciplinary lines, with
contributions on early and more recent graph theory, partitions, block designs, latin
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squares, enumeration and combinatorial set theory. A problem faced by any such
account is that of striking a balance between exposition − explaining to a lay reader
what the principal concepts and results are and what methods were employed in their
investigation − and the strictly historical question of placing these developments in
the context of the history of the subject as a whole and deciding who discovered
what when. Another major issue is that of notation and terminology: how much
should old research be viewed through the prism of modern usage? The authors in
this volume cope with these issues in different ways, but as a whole the narrative
reads lucidly and there is an extensive bibliography at the end of each chapter so that
interested readers can pursue particular topics as they wish.

Inevitably we encounter many cases of mistaken attribution. Both Hamiltonian
cycles and Steiner triple systems, for example, were studied by Thomas Kirkman
before anyone else, but he did not receive the credit for either. Combinatorial
questions also have a remarkable longevity, and keep on ‘coming back for more’ in
terms of increasing refinement. The four colour problem is one whose roots go back
to 1852 and which stimulated research from many ‘amateur’ mathematicians such as
Alfred Kempe, whose wonderful flawed proof contained features used in the
eventual (and controversial) solution by Appel and Haken in 1977. The technique of
generating functions is another perennial, used with great ingenuity by Euler in the
study of partitions and by Nicholson for enumeration, but still inspiring new research
by Hardy and Ramanujan in 1918. Much progress in combinatorics was stimulated
by the design of statistical experiments, particularly in agriculture, but the ideas
employed first appeared in puzzles such as Kirkman's schoolgirls problem which
appeared ‘versified by a lady’ in the Educational Times of 1870. Latin squares also
have a very long history; indeed, the cover of the book is an illustration from the
Scientific American of two orthogonal squares of order 10, which were also used, we
are told, as the design for a needlepoint rug. Maybe the oddest appearance of any
combinatorial object is the knight's tour through this array which is subject of
Georges Perec's novel La Vie Mode d'Emploi. In the twentieth century there was
renewed interest in finite sets, and particularly matters relating to their intersections,
unions and orderings. One of the offshoots of this was the work of Frank Ramsey,
who died tragically young in 1930, but whose seminal investigation of non-chaotic
behaviour in random structures supplied a spur to further research to
combinatorialists such as Paul Erdös.

A final chapter by Peter Cameron gives a quick overview of recent developments
in combinatorics and reflects on how it is likely to develop. The subject, now at the
forefront of much significant research, has links with group theory, mathematical
logic, computer science, number theory, coding theory and algebraic geometry, as
well as practical implications for the Human Genome Project and the unification of
physics. He ends with a proposal that the basic currency of the universe may not be
space and time but information measured in bits, suggesting that the ‘theory of
everything’ may turn out to be combinatorial.

The book is beautifully illustrated with portraits of the leading contributors,
reproductions of frontispieces from their books and a plethora of diagrams, both
from original sources and specially drawn for the text. This fascinating survey of the
history of an important area in mathematical thought deserves a place in every
respectable library.

GERRY LEVERSHA
15, Maunder Road, Hanwell, London W7 3PN
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