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Will my numbers add up correctly if I round
them?

DAVID HOPKINS

I recently wrote a solution to a student problem.  The answers were the
probabilities for four possible outcomes.  As a check on the calculations, I
wanted to say ‘As expected, these probabilities add up to 1.’  However, they
didn't!  Because of rounding, the probabilities (which I was quoting to
four decimal places) only added up to 0.9999.  To rescue the situation I tried
rounding to 3DP or 5DP instead, but these didn't add up correctly either.
(See Table 1.)

Exact values Rounded to �…
(not rounded) 2DP 3DP 4DP 5DP

0.2979493… 0.30 0.298 0.2979 0.29795

0.3724367… 0.37 0.372 0.3724 0.37244

0.2333670… 0.23 0.233 0.2334 0.23337

0.0962470… 0.10 0.096 0.0962 0.09625

Total = 1 1.00 3 0.999 8 0.9999  8 1.00001  8

TABLE 1: Rounding to different numbers of decimal places

A similar issue often arises in opinion polls where the rounded
percentages of people answering ‘Yes’, ‘No’ and ‘Don't know’, e.g. 64%,
25% and 10%, don't add up to 100%.

So I wondered how likely it is that a set of  random numbers will add
up correctly when the individual numbers and the total are rounded to
decimal places.  When does ‘round then sum’ give the same answer as ‘sum
then round’?

n
d

I will show here that, based on some simple assumptions, the

probability that the rounding works correctly is equal to .

It is perhaps surprising that such an exotic integral should arise in a real-
world problem and that these probabilities take rational values, as shown in
Table 2.  A detailed description of this type of integral was given in an
earlier Gazette article [1].
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1.0000 0.7500 0.6667 0.5990 0.5500 0.5110 0.4794 0.4529

TABLE 2: Probabilities for small values of n
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I will assume in my model that the fractional parts of the numbers
involved can be considered to come from a continuous uniform distribution.
Provided that a few significant figures still remain after rounding and the
numbers don't have a special form, this will be a reasonable assumption in
many situations.  Even if the numbers follow a different distribution such as
Benford's Law [2], which real-life lists of numbers often conform to, the
distribution of the third and higher significant digits will be practically
indistinguishable from a uniform distribution.  In my example the
probabilities involved sums of exponential functions.  Note, however, that
this assumption may not be valid in some cases, e.g. if the probabilities come
from a binomial distribution in which the probability  takes a rational value.p

Initial observations
To start with, note that if we multiply the four exact (unrounded) values

in Table 1 by 10 000, then round each of the resulting values to the nearest
integer and calculate the total (9999), this is effectively the same calculation
as rounding to 4DP.  The digits in the ‘Nearest integer’ column in Table 3
match the digits in the 4DP column in Table 1.

Exact value × 10 000 Nearest integer Fractional part

0.2979493… 2979.493… 2979 0.493…
0.3724367… 3724.367… 3724 0.367…
0.2333670… 2333.670… 2334 0.670…
0.0962470… 962.470… 962 0.470…

Total = 1 10000 9999 2.000…

TABLE 3: The equivalent problem involving integers

This tells us several things:
(1) If we can assume that the fractional parts of the original exact values

are uniformly distributed (with the digits going on for ever), this will
also be true of the new fractional parts after we multiply by any power
of 10.  So the probability that the rounding will work correctly when
the numbers are added is independent of the number of decimal places
 we round to.d

(2) We can therefore just consider whether rounding numbers such as those
in the second column of Table 3 (2979.493… etc.) to the nearest
integer (2979 etc.) will give the correct total.  (Here , so
they don't.)  Furthermore, the particular values of the integer parts
appearing in this calculation (2979 etc.) do not affect the direction of
the rounding, i.e. whether the fractional parts round up or down.  So,
without loss of generality, we can assume that the integer parts are all
zero, i.e. we can just consider numbers such as those in the final
column of Table 3 (0.493… etc.), which lie in the range .

9999 ≠ 10 000

[0,  1)
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(3) If the fractional parts come from a continuous uniform distribution
there should be no link between the digits featuring at different
positions.  So the rounding errors arising from rounding to different
numbers of decimal places will be statistically independent.  This
means that we can work out the probability that the rounding will not
work correctly based on several levels of precision, e.g. for 3DP and
4DP and 5DP, by just multiplying the relevant probabilities together.

(4) If we write the exact values in a different base (e.g. binary), the
numbers we obtain after rounding will in general be different.
However, the fractional parts will still be uniformly distributed.  So the
probability that the totals round correctly is still the same, irrespective
of the number base used.

Mathematical specification
I have adopted the following mathematical model.  Let

be independent random numbers distributed uniformly on  and let
 denote the function that rounds to the nearest integer.  The

error  in the final digit due to rounding will then be

u1, u2, … , un

[0,  1)
N (x) = [x + 1

2]
ε

ε = ∑
n

i = 1

N (ui) − N (∑n

i = 1

ui) .

This is ‘round then sum’ minus ‘sum then round’.  For example, in the 4DP
example above, we have

∑
4

i =1

N(ui) = N(0.493) + N(0.367) + N(0.670) + N(0.470) = 0 + 0 + 1 + 0 = 1

N(∑4

i =1

ui) = N(0.493 + 0.367 + 0.670 + 0.470) = N(2.000) = 2.and

So in this case the error is .  If , the rounding works
correctly and I will write the probability of this outcome as .

ε = 1 − 2 = −1 ε = 0
p(n)

This model ignores the fact that the theoretical total is often an exact
prescribed number, e.g. 1 or 100%, as in the examples above.  In this case
the value of one of the ‘random’ numbers is forced.  For example, the
number 0.0962470… in Table 1 can be deduced exactly from the other three
values.  (In statistical terminology we ‘lose one degree of freedom’.)
To deal with this situation, in the formulae derived below we just need to
replace  with  (the number of independent values).n n − 1

Small values of n
If , the total is just equal to the single original value.  So, trivially,

the total will always be correct after rounding.  So .
n = 1

p(1) = 1

If , we can use the diagram in Figure 1 to find the probability that
the total will be correct after rounding.  The axes show the fractional parts

n = 2
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 and , and the numbers shown in the triangles are the corresponding
rounding errors .  For example, the point indicated is  and the
error for this point is .

u1 u2

ε (0.2,  0.4)
ε = [N (0.2) + N (0.4)] − N (0.6) = 0 − 1 = −1

0
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0
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0

0
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+1

FIGURE 1: Rounding errors with two numbers

We can see that the probability that the rounding will work correctly is
(corresponding to the proportion of the square that is shaded), and that there
is a probability of  that we will get a rounding error of 1 unit in either
direction.  So .

3
4

1
8

p(2) = 3
4

Sums of uniform distributions
To extend these results to higher values of , which are not easy to

visualise geometrically, I will need to use some results relating to the sums
of uniform distributions.

n

If  are independent  random variables, then the

probability density function of , is

U1, U2, … , Un U (0,  1)
Y = ∑

n

i = 1
Ui

f n (y) =
1

(n − 1)! ∑
[y]

j = 0

(−1)j ( ) (y − j)n − 1 ,  0 ≤ y < n. (1)
n
j

This can be established by starting from ,  and
repeatedly applying the convolution equation ,
paying careful attention to the limits of the integrals involved.  Equation (1)
can then be confirmed by induction.

f 1 (y) = 1 0 ≤ y < 1
f n (y) = ∫

 y
y − 1 f n − 1 (t) dt

Since the rounding of each number depends on whether it is greater than
or less than , we will actually need to use the PDF of the related quantity

, where  are independent  random

variables, i.e. they are uniform over the range .  Since values of  can
be obtained by simply halving the values of , thus transforming the

 distribution into a  distribution, we can find the PDF of
by applying the transformation  to (1).  This tells us that the PDF of

1
2

X = ∑
n

i = 1
Vi V1, V2, … , Vn U (0, 1

2)
[0,  12) Vi

U i

U (0,  1) U (0, 1
2) X

X = 1
2Y
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 isX

gn(x) = 2f n(2x) =
2

(n − 1)! ∑
[2x]

j =0

(−1)j ( )(2x − j)n−1,  0 ≤ x < 1
2n. (2)

n
j

This gives a piecewise continuous function with ‘joins’ at the half-integers
.  For example, for ,0, 1

2,  1, … , 1
2n − 1

2 n = 4

g4(x) =
1
3 ∑

[2x]

j =0

(−1)j ( )(2x − j)3 =


















4
j

8
3x3 if  0 ≤ x < 1

2

4
3 − 8x + 16x2 − 8x3 if  12 ≤ x < 1

−44
3 + 40x − 32x2 + 8x3 if  1 ≤ x < 3

2

64
3 − 32x + 16x2 − 8

3x3 if  32 ≤ x < 2

Figure 2 shows graphs of this function for a selection of values of .n
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FIGURE 2: PDFs of the sum of  independent  random variablesn U (0, 1
2)

Higher values of n
I will use the case  to show how we can find the probabilities
 for higher values of .

n = 4
p(n) n

There is a probability of  that the fractional parts of the four
numbers  will all lie in the range , corresponding to the
shaded areas in Figure 3.  Because these values are all in the range , we

(1
2)4 = 1

16
u1, u2, u3, u4 [0, 1

2)
[0, 1

2)

0

0.5

1

0 0

1 1

0 0

11

u4u3u2u1

FIGURE 3: When all four fractional parts lie in the range [0, 1
2)
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have .  So, in this case, the rounding
will work correctly if , i.e. if  lies in
the range .  The probability of this outcome is .

N (u1) + N (u2) + N (u3) + N (u4) = 0
N(u1 + u2 + u3 + u4) = 0 u1 + u2 + u3 + u4

[0, 1
2) 1

16 ∫
 1/2
0 g4 (x) dx

Another possibility is that the fractional parts fall in the ranges shown in
Figure 4, with two values (  and , say) above  and the other two below.
In this case we have .  So
the rounding will work correctly if , i.e. if

 lies in the range .

u2 u3
1
2

N(u1) + N(u2) + N(u3) + N(u4) = 0 + 1 + 1 + 0 = 2
N(u1 + u2 + u3 + u4) = 2

u1 + u2 + u3 + u4 [11
2,21

2)
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FIGURE 4: Dealing with other patterns

We can evaluate this probability using the same distribution as for the
first case by noting that, if  and  are uniformly distributed on ,
then  and  are uniformly distributed on .  We then
have  and we need  to be
in the range .  This is then the same situation as in Figure 3, but with
a different range for the total.

u2 u3 [1
2,  1)

u∗
2 = u2 − 1

2 u∗
3 = u3 − 1

2 [0, 1
2)

N(u1) + N(u∗
2) + N(u∗

3) + N(u4) = 0 u1 + u∗
2 + u∗

3 + u4

[1
2,  11

2)

The pattern in Figure 4 can occur in  ways, because the two

higher values could occur in any of the four positions.  So the probability for
this case is .

( ) = 6
4
2

6
16 ∫

 3/2
1/2 g4 (x) dx

If we fill in the other combinations in the same way, we find that the
probability that the rounding will work correctly when  isn = 4

p(4) =
1
16 ∫

 1/2

0
g4(x)dx +

4
16 ∫

 1

0
g4(x)dx +

6
16 ∫

 3/2

1/2
g4(x)dx +

4
16 ∫

 2

1
g4(x)dx +

1
16 ∫

 2

3/2
g4(x)dx. (3)
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The three middle integrals each cover a range of width 1 and include a ‘join’
in the function.  If we split these up into two parts, e.g. , we
can write this result in the equivalent form

∫
 1
0 = ∫

1/2
0 + ∫

 1
1/2

p(4) =
5
16 ∫

 1/2

0
g4(x)dx +

10
16 ∫

 1

1/2
g4(x)dx +

10
16 ∫

 3/2

1
g4(x)dx +

5
16 ∫

 2

3/2
g4(x)dx.    (4)

The adjacent coefficients of the form  and  in (3) combine to

produce the coefficients of the form  in (4).  The general formula for this

result is

( )4
k − 1 ( )4

k

( )5
k

p(n) =
1
2n ∑

n

k = 1
( ) ∫

 k/2

(k − 1)/2
gn (x)  dx. (5)n + 1

k

Substituting for  from (2), we can write this asgn (x)

p(n) =
1
2n ∑

n

k=1
( ) ∫ k/2

(k−1)/2( 2
(n − 1)! ∑

k−1

j =0

(−1)j ( )(2x − j)n−1)dx. (6)n + 1
k

n
j

Note that, since  takes values in the range  in this
integral, the upper limit for the summation over  becomes .

x 1
2 (k − 1) ≤ x ≤ 1

2k
j [2x] = k − 1

Since 

∫
 k/2

(k − 1)/2
(2x − j)n − 1 dx =

1
2n

{(k − j)n − (k − 1 − j)n} ,

this becomes

p(n) =
1

2nn! ∑
k − 1

k = 1
( ) ∑

k − 1

j = 0

(−1)j ( ) {(k − j)n − (k − 1 − j)n} .n + 1
k

n
j

The inner summation over  has the form of a telescoping sum, which we
can simplify by changing the dummy variable in the second component to

, renaming  as , combining the two components and
simplifying.

j

j∗ = j + 1 j∗ j

∑
k − 1

j = 0

(−1)j ( ) (k − j)n − ∑
k − 1

j = 0

(−1)j ( ) (k − 1 − j)nn
j

n
j

= ∑
k − 1

j = 0

(−1)j ( ) (k − j)n − ∑
k

j∗ = 1

(−1)j∗ − 1 ( ) (k − j∗)nn
j

n
j∗ − 1

= ∑
k − 1

j = 0

(−1)j ( ) (k − j)n + ∑
k

j = 1

(−1)j ( ) (k − j)nn
j

n
j − 1

= ( ) kn + ∑
k − 1

j = 1

(−1)j 


( ) + ( ) (k − j)n + 0

n
0

n
j

n
j − 1
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= ( ) kn + ∑
k − 1

j = 1

(−1)j ( ) (k − j)nn + 1
0

n + 1
j

= ∑
k − 1

j = 0

(−1)j ( ) (k − j)n .
n + 1

j

So (6) simplifies to

p(n) =
1

2nn! ∑
n

k = 1
( ) ∑

k − 1

j = 0

(−1)j ( ) (k − j)n . (7)n + 1
k

n + 1
j

By writing  to group the terms with equal powers together, this
can also be expressed in the alternative, but equivalent, form

r = k − j

p(n) =
1

2nn! ∑
n

r = 1

rn ∑
n − r

j = 0

(−1)j ( ) ( ) . (8)
n + 1

j
n + 1
r + j

The numerical values in Table 2 above were calculated using this formula.

Simplifying the formula
Equation (8) involves a double sum of a long series of terms with

alternating signs, resulting in fractions with rapidly increasing
denominators.  Evaluating these for larger values of  is not easy.  However,
we can simplify (8) considerably using some further tricks.

n

If we first add and subtract the next term in the inner sum
(corresponding to ), we havej = n − r + 1

p(n) =
1

2nn! ∑
n

r =1

rn


 ∑

n− r +1

j =0

(−1)j ( )( ) − (−1)n− r +1( )( )n + 1
j

n + 1
r + j

n + 1
n − r + 1

n + 1
n + 1

=
1

2nn! ∑
n

r =1

rn


 ∑

n− r +1

j =0

(−1)j ( )( ) − (−1)n− r +1( ). (9)
n + 1

j
n + 1
r + j

n + 1
r

We can then simplify the first component by noting that 

∑
n − r + 1

j = 0

(−1)j ( ) ( )n + 1
j

n + 1
r + j

is the coefficient of  when we multiply together the series expansions
for  and .  Since , this
must equal the coefficient of  in , so that

tn − r + 1

(1 − t)n + 1 (1 + t)n + 1 (1 − t)n+1(1 + t)n+1 = (1 − t2)n+1

tn − r + 1 (1 − t2)n+1

∑
n− r +1

j =0

(−1)j ( )( ) =














n + 1
j

n + 1
r + j

(−1)(n− r +1)/2( )n + 1
1
2 (n − r + 1)

if n − r + 1

is even,

0 otherwise.
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We can also simplify the second component of (9) by noting that  is an

order polynomial and  is an  difference of this

function.  This must equal zero, in the same way that the third differences of

a quadratic function are all equal to zero.  So  and,

separating out the term for , we get

rn nth

∑
n+1

r =1

rn(−1)r ( )n + 1
r

(n + 1) th

∑
n+1

r =1

rn(−1)r ( ) = 0
n + 1

r
r = n + 1

∑
n

r = 1

rn (−1)r ( ) = (−1)n (n + 1)nn + 1
r

and hence 

− ∑
n

r = 1

rn (−1)n − r + 1 ( ) = (n + 1)n .n + 1
r

If we substitute these results into (9), we get

p(n) =
1

2nn!








∑
n

r = 1
n − r + 1 even

rn (−1)(n − r + 1)/2 ( ) + (n + 1)n






.
n + 1

1
2 (n − r + 1)

If we then write  in the sum to pick up the terms with the
correct parity, this gives us the following simpler formula, which involves
only a single summation

n − r + 1 = 2i

p(n) =
1

2nn!






∑

[1
2n]

i = 1

(n + 1 − 2i)n (−1)i ( ) + (n + 1)n







n + 1
i

=
1
n! ∑

[1
2n]

i = 1

(1
2 (n + 1) − i)n (−1)i ( ) . (10)n + 1

i

I have used (10) in Mathematica to calculate accurate values for powers of
10 up to .  These are shown to 10 decimal places in Table 4.  (The
approximate values are derived from the asymptotic result in (14) below.)

n = 105

p(n) n = 10 n = 100 n = 1000 n = 10 000 n = 100 000

Accurate 0.4109626428 0.1373074303 0.0436735567 0.0138188678 0.0043701653
Approx 0.4109626675 0.1373074303 0.0436735567 0.0138188678 0.0043701653

TABLE 4: Accurate and approximate values of  for powers of 10p(n)
I am grateful to the referee for drawing my attention to a paper from 1987
[3], which also derived (10), using a different method, and included an
almost identical diagram to my Figure 1.
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The integral connection
The connection with the sine integral arises because we can also express

 in terms of a similar summation formula.∫
 ∞

0
(sinx

x )n

dx

In [1, p. 217] the author shows that

∫
 ∞

0

sinn x

xm
 dx =

1
(m − 1)! ∫

 ∞

0
(1
x

 
dm− 1

dxm− 1
(sinn x)) dx.

This leads to the following results (given in the Appendix on p. 222):

∫
 ∞

0

sinnx

xm
 dx =


















π
(m− 1)! (1

2)n

∑
r

k=1

(−1)k+q( )(2k)m−1n
r − k

(n = 2r ,
m = 2q)

π
(m− 1)! (1

2)n

∑
r

k=0

(−1)k+q( )(2k + 1)m−1n
r − k

(n = 2r + 1,
m = 2q + 1)

If we set  and use the substitution  (or ), these
two forms become

q = r i = r − k k = r − i

∫
 ∞

0

sin2r x

x2r
 dx =

π
(2r − 1)! (1

2)2r

∑
r −1

i =0

(−1)2r − i ( )(2r − 2i)2r −12r
i

=
π
2

1
(2r − 1)! ∑

r −1

i =0

(−1)i ( )(r − i)2r −12r
i

and

∫
 ∞

0

sin2r + 1 x

x2r + 1
 dx =

π
(2r)! (1

2)2r + 1

∑
r

i = 0

(−1)2r − i ( ) (2r − 2i + 1)2r2r + 1
i

=
π
2

1
(2r)! ∑

r

i = 0

(−1)i ( ) (r + 1
2 − i)2r .2r + 1

i

These can be combined in the form

∫
 ∞

0

sinn x

xn
 dx =

π
2

1
(n − 1)! ∑

[(n − 1)/2]

i = 0

(−1)i ( ) (1
2n − i)n − 1 .n

i

Comparing this with (10), we see that

p(n) =
2
π ∫

 ∞

0
(sinx

x )n + 1

 dx. (11)

These integrals can be expressed in various alternative forms.  For example,
[4] shows that

∫
 ∞

0
(sinx

x )n

 dx =














n∫
 ∞

0

un−2

(u2 + 22)(u2 + 42)… (u2 + n2) du (neven)

n∫
 ∞

0

un−1

(u2 + 12)(u2 + 32)… (u2 + n2) du (nodd)
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Note that the power in the numerator is  in the first case, but  in
the second case.  However, we can write these integrals in a slightly more
consistent form by applying the substitution .

n − 2 n − 1

y = 1/ u

∫
 ∞

0
(sinx

x )n

 dx =














n∫
 ∞

0

1
(1 + 22y2)(1 + 42y2)… (1 + n2y2) du (neven)

n∫
 ∞

0

1
(1 + 12y2)(1 + 32y2)… (1 + n2y2) du (nodd)

Distribution of the errors
By adjusting the ranges of the integrals in (3) we can modify the method

above to find , the probability distribution for the different sizes of
error  that can result from rounding.  This gives a rather unwieldy
generalisation of (6).

p(n, ε)
ε

p(n, ε) =
1

2n−1(n − 1)! ∑
min(n+ 1,n−2ε)

k=max(0,1−2ε)
( ) ∫ 12k+ε

1
2k+ε − 1

2
∑

k+2ε− 1

j =0

(−1)j ( )(2x − j)n−1dx.n + 1
k

n
j

This applies for values of  and .n = 1,  2,  3, … ε = −[1
2n] , … , −2, −1,0,1,2, … [1

2n]
As before, we can simplify this using the same tricks described above to

obtain the following simpler formula (which reduces to (10) when ):ε = 0

p(n, ε) =
1
n! ∑

[1
2n − ε]

i = 0

(1
2 (n + 1) − ε − i)n (−1)i ( ) . (12)n + 1

i

The values for , calculated using this formula, are shown in Table 5
below.  As we would expect, the probabilities for the errors form a
symmetrical distribution about zero.

n = 4

I suspected that (12) could also be expressed in the form of a sine
integral by generalising (11) in some way, but I couldn't see how to achieve
this.  I am grateful once again to the referee for suggesting an alternative
method of deriving these results based on more advanced statistical theory.
He noted that  could be expressed in terms of a sum of  random

variables, each of which has characteristic function .  This insight has

enabled me to establish that , the probability of obtaining a rounding
error of , can be expressed in the form

p(n) U (−1,1)
sin t

t
p(n, ε)

ε

p(n, ε) = ∫
 2ε + 1

2ε − 1
{ 1
2π ∫

 ∞

−∞ (sin t

t )n

e−i tzdt} dz.

This can be simplified (with  renamed as ) to give the general formulat x

p(n, ε) =
2
π ∫

 ∞

−∞ (sinx

x )n

cos2εx dx. (13)

This generalisation ‘works’ because, when , this integral
evaluates to zero (even for non-integer values of ), which I don't think is
immediately obvious.

|ε| > 1
2 (n + 1)

ε
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Some experimental results
Checking the answers

To check these results, we can calculate the rounding errors in the totals
when the four ‘random’ numbers , ,

 and  are rounded to  decimal places for
different values of .  Table 5 shows the distribution of errors for all values
of  in the range .  (The upper limit for  was chosen so
that the expected numbers were all multiples of 100 and the calculations
would take less than 5 hours to run on my computer in Mathematica!)

π = 3.14159… e = 2.71828…
2 = 1.41421… φ = 1.61803… d

d
d 1,2,3, … ,115 200 d

Error in the final digit ()ε −2 −1 0 1 2

Theoretical proportion, calculated
 n = 4using (12) with

1
384

19
96

115
192

19
96

1
384

Actual number of occurrences 312 22 863 68 915 22 807 303

Expected number of occurrences300 22 800 69 000 22 800 300

TABLE 5: Checking the results

These results have a chi-square value of ,

based on 4 degrees of freedom.  The low value of 0.79 indicates that the
actual numbers are entirely consistent with the expected numbers predicted
by (12).

χ2 = ∑ ( )2

= 0.79
Actual − Expected

Expected

Asymptotic formulae
From Table 4 it appears that increasing  by a factor of 100 reduces the

value of  by a factor of approximately 10, suggesting that
asymptotically .  Looking at the numerical values of
further suggests that .

n
p(n)

p(n) ≈ k / n p(n) n
k = 6/ π = 1.38197659…

This approximation can be refined further by looking for an asymptotic
series of the form

p(n − 1) =
2
π ∫

 ∞

0
(sinx

x )n

dx ≈
6

πn (1 +
a1

n
+

a2

n2
+

a3

n3
+

a4

n4) .

(I've used  here, rather than , so that the power in the sine integral is
.)

n − 1 n
n

The values of  can be found iteratively by calculating
very accurately for a few large values of  and using simultaneous equations
to identify the successive coefficients, assuming that the denominators will
be one of the ‘usual suspects’.  This leads to (14), which gives very accurate
approximations (see Table 4).

a1, a2, a3, a4 p(n)
n

p(n − 1) =
6

πn (1 −
3

20n
−

13
1120n2

+
27

3200n3
+

52 791
3 942 400n4

+ O(n−5)).  (14)
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Generating functions
Another way to check the results and look for further connections is to

find a generating function.  After some experimenting, I have found that the
values of  can be captured as the coefficients of the following
function:

p(n, ε)

G (x, t) = ∑
∞

n = 0
∑
[1

2n]

ε = −[1
2n]

p(n, ε) xεtn =
y coshyt

y − sinhyt
,

where .y =
1
2 ( x −

1
x) = sinh(1

2 ln x)
For example, to obtain the terms up to , we can use the Mathematica

code
t4

Series[y*Cosh[y*t]/(y-Sinh[y*t])/.y->(Sqrt[x]-1/Sqrt[x])/2,{t,0,4}]
This generates a series of the form

G (x, t) = 1 + t + (1
8x

−1 + 3
4 + 1

8x) t2 + (1
6x

−1 + 2
3 + 1

6x) t3

  + ( 1
384x

−2 + 19
96x

−1 + 115
192 + 19

96x
1 + 1

384x
2) t4 +… . (15)

The  term reproduces the numerical values of  shown in Table 5.t4 p(4, ε)
Based on this generating function, we can also confirm that, for each

value of , the probabilities for  sum to 1, sincen p(n, ε)

∑
∞

n=0
∑
[1

2n]

ε =−[1
2n]

p(n, ε)tn = lim
x→ 1

G(x, t) = lim
y→ 0

coshyt

1 −
sinhyt

y

=
1

1 − t
= ∑

∞

n=0

1tn.

So they define a valid probability distribution.

Also, evaluating  using Mathematica shows that

, the variance of the errors, is equal to  when .
So when , the standard deviation will be less than 1 and the
rounding errors will typically be quite small.

lim
x → 1

∂ 2

∂ 2x
 G (x, t)

∑ ε2p(n, ε) 1
12 (n + 1) n ≥ 2

n ≤ 10

The coefficient of  in (15) gives a generating function for the values of
,

x0

p(n)

G(t) = ∑∞
n=0p(n)tn = 1 + t + 3

4t
2 + 2

3t
3 + 115

192t
4 + 11

20t
5 + 5887

11520t
6 + 151

315t
7 +…  (16)

The simplest formula I have been able to find for this series is

G (t) =
1
n ∑

n − 1

k = 0

g(sin
kπ
n

, t) + O (t2n) for  n = 1,2,3, … (17)

where g(α, t) =














α cosαt

α − sinαt
if  α ≠ 0,

1
1 − t

if  α = 0.
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Interestingly, if we ‘rotate’ this function by replacing  with ,

where  is an arbitrary ‘angle’, it still satisfies (17), although the remainder
terms ‘hidden’ in the  term will change.

kπ
n

kπ
n

+ θ

θ
O (t2n)

In the limit as , (17) becomes .
(Rotation now corresponds to shifting the range of integration, which leaves
the value of the integral unchanged.)  If we apply the substitution

, we get

n → ∞ G (t) = ∫
 1
0 g(sinπx, t) dx

u = sinπx

G (t) = 2 ∫
 1/2

0
g(sinπx, t) dx =

2
π ∫

 1

0

u cosut

u − sinut
 

du

1 − u2
. (18)

This is valid when  and also generates the series in (16).t < 1

And finally …
Returning to my original problem, the probability that my four numbers

didn't round correctly to 3, 4 or 5 DP is .  (Note
that the numbers in my list were constrained to add up to 1, so we need to
subtract 1 degree of freedom from the value of .)  So perhaps I was just
unlucky with the set of numbers I was working with.  Next time I will avoid
the whole issue by adding the disclaimer ‘Because of rounding, the totals
don't necessarily add up exactly.’!

(1 − p(3))3 = (1 − 2
3)3 ≈ 0.037

n
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