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Will my numbers add up correctly if | round
them?

DAVID HOPKINS

| recentlywrote a solutionto a studentproblem. The answersverethe
probabilitiesfor four possibleoutcomes. As a checkon the calculations)|
wantedto say‘As expectedtheseprobabilitiesaddupto 1. However,they
didn't! Becauseof rounding, the probabilities (which | was quoting to
four decimalplaces)only addedup to 0.9999. To rescuethe situationl tried
roundingto 3DP or 5DP instead,but thesedidn't add up correctly either.
(See Table 1.)

Exact values Rounded ta.[]

(notrounded) | 2DP 3DP 4DP 5DP
0.2979493.. 0.30 0.298 0.2979 0.29795
0.3724367.. 0.37 0.372 0.3724 0.37244
0.2333670.. 0.23 0.233 0.2334 0.23337
0.0962470.. 0.10 0.096 0.0962 0.09625
Total =1 1.00v 0.999x 0.9999 X 1.00001 X

TABLE 1: Rounding to different numbers of decimal places

A similar issue often arises in opinion polls where the rounded
percentage®f peopleanswering'Yes’, ‘No’ and‘Don't know’, e.g. 64%,
25% and 10%, don't add up to 100%.

Sol wonderedhow likely it is thata setof n randomnumberswill add
up correctly when the individual numbersand the total are roundedto d
decimalplaces. Whendoes‘round thensum’ give the sameansweras‘sum
then round’?

| will show here that, based on some simple assumptions,the

. . . 2 ¢=(sinx\""!
probability thatthe roundingworks correctlyis equalto — fo (T) dx.
JT

It is perhapssurprisingthat suchan exotic integral shouldarisein a real-
world problemandthat theseprobabilitiestake rationalvalues,asshownin
Table 2. A detaileddescriptionof this type of integral was given in an
earlierGazettearticle [1].

nN=1|n=2|n=3|n=4|{n=5|n=6(n=7|n=28
1 § g 1_15 E 5887 151 259723
4 3 192 20 11520 315 573440

1.0000( 0.7500( 0.6667| 0.5990( 0.5500( 0.5110( 0.4794( 0.4529

TABLE 2: Probabilities for small values of
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| will assumein my model that the fractional parts of the numbers
involved canbe consideredo comefrom a continuousuniform distribution.
Providedthat a few significant figures still remain after rounding and the
numbersdon't havea specialform, this will be a reasonableassumptionn
many situations. Evenif the numbersfollow a differentdistributionsuchas
Benford'sLaw [2], which real-life lists of nhumbersoften conform to, the
distribution of the third and higher significant digits will be practically
indistinguishable from a uniform distribution. In my example the
probabilitiesinvolved sumsof exponentialfunctions. Note, however,that
this assumptiormay not be valid in somecasese.g.if the probabilitiescome
from a binomial distribution in which the probabiliptakes a rational value.

Initial observations

To startwith, notethatif we multiply the four exact(unroundedyalues
in Table1 by 10 000, thenroundeachof the resultingvaluesto the nearest
integerandcalculatethe total (9999),this is effectively the samecalculation
asroundingto 4DP. The digits in the ‘Nearestinteger’ columnin Table 3
match the digits in the 4DP column in Table 1.

Exact value x 10 000 Nearest integer |Fractional part
0.2979493.. 2979.493.. 2979 0.493..
0.3724367.. 3724.367.. 3724 0.367..
0.2333670.. 2333.670.. 2334 0.670Q..
0.0962470.. 962.470.. 962 0.470Q..
Total =1 10000 9999 2.000Q..

TABLE 3: The equivalent problem involving integers
This tells us several things:

(1) If we canassumehat the fractional partsof the original exactvalues
are uniformly distributed(with the digits going on for ever), this will
alsobetrue of the new fractional partsafter we multiply by any power
of 10. So the probability that the roundingwill work correctly when
the numbersareaddedis independenof the numberof decimalplaces
d we round to.

(2) We canthereforgust considemwhetheroundingnumberssuchasthose
in the secondcolumn of Table 3 (2979.493.. etc.) to the nearest
integer(2979etc.)will givethecorrecttotal. (Here9999 = 10 000, so
they don't.) Furthermore,the particular values of the integer parts
appearingn this calculation(2979 etc.) do not affect the direction of
the rounding,i.e. whetherthe fractional partsround up or down. So,
without loss of generality,we canassumedhatthe integerpartsareall
zero, i.e. we can just considernumberssuch as those in the final
column of Table 3 (0.493 etc.), which lie in the rand®, 1).
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(3) If the fractional parts come from a continuousuniform distribution
there should be no link betweenthe digits featuring at different
positions. So the roundingerrors arising from roundingto different
numbersof decimal placeswill be statistically independent. This
meansthat we canwork out the probability that the roundingwill not
work correctly basedon severallevels of precision,e.g.for 3DP and
4DPand5DP, by just multiplying the relevant probabilities together.

(4) If we write the exact valuesin a different base (e.g. binary), the
numbers we obtain after rounding will in general be different.
However thefractionalpartswill still be uniformly distributed. Sothe
probability that the totalsround correctlyis still the same,irrespective
of the number base used.

Mathematical specification

| haveadoptedthe following mathematicaimodel. Let uq, Uy, ... , U,
be independentrandom numbersdistributed uniformly on [0, 1) and let
N(x) = [x + 3] denotethefunctionthatroundsto the nearesinteger. The
errore in the final digit due to rounding will then be

n n
E = ZN(Ui)—N(ZUi).
i—1 i=1
Thisis ‘round thensum’ minus‘sum thenround’. For example,n the 4DP
example above, we have

4
D N(u;) = N(0.493) + N(0.367) + N(0.670) + N(0.470) = 0+ 0+ 1+0=1
i=1

4
Zui) = N(0.493 + 0.367 + 0.670 + 0.470) = N(2.000) = 2.

i=1
Soin thiscasetheerrorise = 1 — 2 = -1. If ¢ = 0, theroundingworks
correctly and | will write the probability of this outcomeE®).

This modelignoresthe fact that the theoreticaltotal is often an exact
prescribednumber,e.g. 1or 100%,asin the examplesabove. In this case
the value of one of the ‘random’ numbersis forced. For example,the
number0.0962470.. in Tablel canbe deducecdexactlyfrom the otherthree
values. (In statistical terminology we ‘lose one degreeof freedom’.)
To dealwith this situation,in the formulae derivedbelow we just needto
replacen with n — 1 (the number oindependentalues).

and N

Small values of

If n = 1, thetotalis justequalto the singleoriginal value. So,trivially,
the total will always be correct after rounding. (&) = 1.

If n = 2, we canusethediagramin Figurel to find the probability that
the total will be correctafter rounding. The axesshowthe fractional parts
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u; and u,, andthe numbersshownin the trianglesare the corresponding
roundingerrorse. For example,the point indicatedis (0.2, 0.4) andthe
error for this pointis = [N(0.2) + N(0.4)] - N(0.6) = 0 - 1 = -1.

1

U2 o5

0 05 1
Uy

FIGURE 1: Rounding errors with two numbers

We can seethat the probability that the roundingwill work correctlyis 3
(correspondingo the proportionof the squarethatis shaded)andthatthere
is a probability of § that we will get a roundingerror of 1 unitin either
direction. S@(2) = 3.

Sums of uniform distributions

To extendtheseresultsto higher valuesof n, which are not easyto
visualisegeometrically,| will needto usesomeresultsrelatingto the sums
of uniform distributions.

If Uy, Uy, ..., U, areindependent (0, 1) randomvariablesthenthe
n
probability density function of = ,zlui, 5
| =

N

1 vl (n _
fh® = T EO(‘” (j)<y—1> . 0<y<n (D

This can be establishedby starting from f;(y) = 1, 0 < y < 1 and
repeatedly applying the convolution equation f,(y) = yy_lfn_l(t)dt,

payingcarefulattentionto the limits of the integralsinvolved. Equation(1)
can then be confirmed by induction.

Sincetheroundingof eachnumberdepend®n whetherit is greaterthan
or lessthan3, we will actuallyneedto usethe PDF of the relatedquantity
n

X = _zlvi, where Vi, V,, ..., V, are independentU (0, ) random
|

variablesj.e. theyareuniform overtherange[O, 3). Sincevaluesof V; can
be obtainedby simply halving the values of U;, thus transformingthe
U (0, 1) distributioninto a U (0, 3) distribution,we canfind the PDF of X
by applyingthetransformationX = 1Y to (1). Thistells usthatthe PDF of
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Xis
[2x]

e Z(—l)j(?)(ZX—j)"'l, 0o<x<in (2
e

This givesa piecewisecontinuousfunction with ‘joins’ at the half-integers
0,3 1,...,4n — 1. Forexample, fon = 4,

gn(x) = 2fn(2X) =

83 if 0<x<3
12 s _ 4_8x+16x2—-83 if 1<x<1
%)= 2D j@x-p*={ 7 L
35 J —4 4+ 40x - 322+ 8 if 1<x<3

O _32x+ 16X -5 if 3<x<2

N

Figure 2 shows graphs of this function for a selection of values of

15 7

05 7

0" - - - -
o o5 1 15 2 25 3 35 4 45 5

FIGURE 2: PDFs of the sum afindependent) (0, 3) random variables

Higher values oh

| will usethe casen = 4 to show how we can find the probabilities
p(n) for higher values aof.

Thereis a probability of (3)* = 4 thatthe fractional partsof the four
numbersuy, U,, Us, Us Will all lie in the range[0, 1), correspondingo the
shadedareasn Figure3. Becausehesevaluesareall in therange[0, 3), we

Up ) Us Uy
1
1 1 1 1
05
0 0 0 0

0

FIGURE 3: When all four fractional parts lie in the rari@e 3)
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haveN (u;) + N(up) + N(uz) + N(uy) = 0. So,in thiscasetherounding
will work correctlyif N(uy + U, + Uz + Uy) = 0, i.e.if ul + Uy, + Uz + Uy liesin

the rangdO0, 3). The probability of this outcome 45 Io 04 (X) dXx.

Anotherpossibilityis thatthe fractionalpartsfall in therangesshownin
Figure4, with two values(u, andus, say)above} andthe othertwo below.
In this casewe haveN(u;) + N(u) + N(uz) + N(uy)) =0+ 1+1+0=2. So
the rounding will work correctly if N(Ui+Uy+Us+Uy) =2, i.e. if
Ui + Uy + Uz + Uy lies in the rang€l3,23).

U U, Us Uy
1
1 1 1 1
05
0 0 0 0
° l
Uy Uy~ 3 Us— 3 Uy
1
1 1 1 1
0.5
0 0 0 0

FIGURE 4: Dealing with other patterns

We can evaluatethis probability using the samedistribution asfor the
first caseby noting that, if u2 and uz are uniformly distributedon [, 1),
thenus = u, — 3 andus = u; — 3 areuniformly distributedon [0, 3). Wethen
haveN (u,) + N(uz) + N(u3) + N(u4) = 0 andwe needu; + U3 + U3 + Uy tO be
in therange[3, 11). Thisis thenthe samesituationasin Figure3, but with
a different range for the total.

The patternin Figure 4 canoccurin (g) = 6 ways, becausehe two

hlghervaluescould occurin anyof thefour positions. Sothe probability for
this case i fl/z O (X) dX.

If we fill in the othercombinationsn the sameway, we find that the
probability that the rounding will work correctly whan= 4is

12

1 32
p(4) = 160 (X)dx+—f g4(x)dx+ f 2g4(x)dx+

I gu(x)dx +i = [,,9:000x 3
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Thethreemiddleintegralseachcoverarangeof width 1 andlncludea Jom

in the function. If we split theseup into two parts,e.g.fo = Jo -+ I3, we
can write this result in the equivalent form

5 12 10 2 10 (32 5 (2
P4 == | @odx+ [ gudx+ = [ gudx = [ guodx (4

The adjacentcoefficients of the form ( 4 and

k-1

Lkl) in (3) combineto

producethe coefficientsof the form (E) in (4). Thegeneralformulafor this

result is

1 n
p(n) = on g,

Substituting forg, (x) from (2), we can write this as

1 n+1 i
p()—znZ( . 1),2((n 1),2< )

k=1
Note that, since x takesvaluesin the range3(k — 1) < x < 3k in hIS
integral, the upper limit for the summation oyéecome$2x] = k —

Since
k/2

-1 _ i o\ _ _n\n
[ i - (i (R R

this becomes

1 n+1
p<n>=2n,2( ‘

k=1

n 1) [ g0 ox (5

(k - 1)/2

)(2x n- 1)olx. (6)

2( r Tk =" - k-1 - )

The inner summationover | hastheform of a telescopingsum, which we
cansimplify by changingthe dummy variablein the secondcomponento
j* =) + 1, renaming j* as |, combining the two componentsand

simplifying.

2 1>J() -y —2( 1)’()k—1—1>“

W‘—

(k=)' - 2( 1)’1( " 1)<k—1*>“

-3
]

I
I M

(k=" + Z( 1)‘( )(k—j)”

n .n
J_l)}(k_J) + 0

=~ —
|
X /—\ A

+

|

N\, n 1\ n
o)k e
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- "t 2<1>J”+1(k—1>
1 .
- 2( |7 k-0
So (6) SimpllerS to
n+ 1)<

1 & _ (n+ 1
~1Y (. k — )"
o 2| K ;0( >( ) @

By writing r = k — j to groupthe termswith equalpowerstogether this
can also be expressed in the alternative, but equivalent, form
n+1

1
p()—zn,z 2<1>J | ”+)

r+j/
The numerical values in Table 2 above were calculated using this formula.

p(n) =

(8)

Simplifying the formula

Equation (8) involves a double sum of a long seriesof terms with
alternating signs, resulting in fractions with rapidly increasing
denominators Evaluatingthesefor largervaluesof n is not easy. However,
we can simplify (8) considerably using some further tricks.

If we first add and subtract the next term in the inner sum
(correspondingtp = n — r + 1), we have

oo =g 3| & e ()
Nl n+1\[n+1 aafn+1
Znn.Z {Z (-1 A G } 9
We can then simplify the first component by noting that
T ey ”Tl(?:f
j=0

is the coefficientof t" " * 1 whenwe multiply togetherthe seriesexpansions
for (1 - )" tand@ + t)"*L Since(l-t)" 1L+t =(1-t)" this
must equal the coefficient 6F"*in (1 — t3)"*1, so that

ifn—r+1

IS even

n+1
s(n—r+1)

n-r+1

2<1>’

N+ 1) (_1)(nr+1)/2(

r+|]

n+1)

0 otherwise
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We canalsosimplify the secondcomponenbf (9) by notingthatr" is annth

1
s (n+1

order polynomial and zr (-1 ( iIs an (n + 1)th differenceof this

function. This mustequalzero in thesamewaythatthethlrd differencesof

n+1
a quadraticfunction are all equalto zero. SoZr (-1 (n: 1 0 and,

r=1

separating out the term for= n + 1, we get

i (1) n+1)

= (-1)"(n + 1"

and hence

_ Zrn(_l)n—r+1 _ (n + l)n.
r=1

If we substitute these results into (9), we get

_ 1 n, (n—r +1)/2 n+1 n
p(n) - znn!{ - r ( 1) (%(n —r 4+ 1)) + (n + 1) }
n-r+1 even

If wethenwriten —r + 1 = 2i in the sumto pick up the termswith the
correctparity, this gives us the following simpler formula, which involves
only a single summation

[2”]
1
P = 5 {2m+1—zw<nﬁ+l

n+1
r

I
=
|M:
'_\

+(n + 1)”}

1 [2”]
=—2Qm+bﬂﬂl)

' i=1

(n + 1 (10)

| haveused(10) in Mathematicato calculateaccuratevaluesfor powersof
10upton = 10°. Theseareshownto 10 decimalplacesin Table4. (The
approximate values are derived from the asymptotic result in (14) below.)

p(n) n =10 n = 100 n = 1000 n =10000 n = 100000

Accurate 0.4109626428 0.1373074303 0.0436735567 0.0138188678 0.0043701653
Approx  |0.4109626675 0.1373074303 0.0436735567 0.0138188678 0.0043701653

TABLE 4: Accurate and approximate valuegon) for powers of 10
| am gratefulto the refereefor drawingmy attentionto a paperfrom 1987
[3], which also derived (10), using a different method, and included an
almost identical diagram to my Figure 1.
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The integral connection
The connectionwith the sineintegralarisesbecausave canalsoexpress

sinXx
f ( ) dx in terms of a similar summation formula.
o\ X

In [1, p. 217] the author shows that
= Sin"x 1 =(1 d™t
I, 0 = g I [ s (s
This leads to the following results (given in the Appendix on p. 222):

T ke g - (n=2r,
- Sin'x (m- 1)'( ) Z( b ( — k)(2k) m = 2q)
Io dx =<

XT 7 (IS, L (n=2r+1,
(m— 1)I( ) Z( 2 q( k)(2k+l) " m=2q+1)

If we setq = r andusethe substitutioni = r — k (ork = r — i), these
two forms become

= SN x _ T 1 it or—il2r L2r—1
J, X dX_(Zr—l)!(_) ;(—1) (i)(Zr—Zl)

1 'C
Z(Zr—l)lz'(_ )( )(r_')z 1

and
Sln2r+1 T 12r+l r or i
J‘o x2r+1 dx = (2r)I (_) z =D

- S 5 >(2r oo

These can be combined in the form
= sin"x x 1 A iy 1
_ _q 1. -
Jo = O 2(n - 1! .Zo ( )(i)(zn )
Comparing this with (10), we see that

2 |+ Yer - 2i + 12

o /i n+1
p(n) = gjo (%() dx. (11)

Theseintegralscanbe expressedh variousalternativeforms. For example,
[4] shows that

un—2

j(S'_nX) dx = | I v o R
oo n-1
o nJ' - du (nodd)
o (U2+13)(u2+3?)... (U2 +n?
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Notethatthe powerin thenumeratois n — 2 in thefirst casebutn — 1in
the secondcase. However,we canwrite theseintegralsin a slightly more
consistent form by applying the substitutpr= 1/ u.

1

J~°°(sinx)” g n-[o (1+222)(1+4?)... (1+ n?3?) du (neven
—) dx =
0 X oo 1

nJ.O (1+132)(1+332)...(1+ n3®) du (nodd)

Distribution of the errors

By adjustingtherangesof theintegralsin (3) we canmodify the method
aboveto find p(n, ¢), the probability distribution for the different sizesof
error ¢ that can result from rounding. This gives a rather unwieldy
generalisation of (6).

k+2¢ -

min(n+1,n—2¢) +1 —k+g
neg=——— ( ( 1y()(2x " tdx.
P 2"1(n- 1) k=ma%l—2£) k L'“ -3 ; J

This applies for values of= 1, 2, 3,... ande = -[3n],...,-2,-1,0,1,2, ... [3n].

As before,we cansimplify this usingthe sametricks describedaboveto
obtain the following simpler formula (which reduces to (10) whea 0):

1 [3n -]
p(ne) = — > B+ 1) -e-i)D
i=0
Thevaluesfor n = 4, calculatedusingthis formula, are shownin Table5
below. As we would expect, the probabilities for the errors form a
symmetrical distribution about zero.

| suspectedhat (12) could also be expressedn the form of a sine
integralby generalising11) in someway, but | couldn'tseehow to achieve
this. | am grateful onceagainto the refereefor suggestingan alternative
methodof deriving theseresultsbasedon more advancedstatisticaltheory.
He notedthatp(n) couldbe expressedh termsof asumof U (-1,1) random

(n T o az

: : - . sint L
variables,eachof which hascharacteristidunction < This insight has

enabledmeto establishthatp(n, ¢), the probability of obtaininga rounding
error ofe, can be expressed in the form

(N, &) = .[28+1{ 1 J. (smt) —itzdt}dZ

2-1 |27 t
This can be simplified (withrenamed asg) to give the general formula

p(n, ) = —f (smx) cos2ex dXx. (13)

This generalisation'works’ becausewhen |¢] > 3(n + 1), this integral
evaluatedo zero (evenfor non-integervaluesof &), which | don'tthink is
immediately obvious.
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Some experimental results
Checking the answers

To checktheseresults,we cancalculatethe roundingerrorsin thetotals
when the four ‘random’ numbers 7 = 3.14159..., e = 2.71828...,
V2 = 1.41421... and¢ = 1.61803... areroundedto d decimalplacesfor
differentvaluesof d. Table5 showsthe distributionof errorsfor all values
of d in therangel,2,3, ... ,115200. (The uppelimit for d waschosenso
that the expectednumberswere all multiples of 100 and the calculations
would take less than 5 hours to run on my computbtathematicd)

Error in the final digit £) -2 -1 0 1

2
Theoretical proportion, calculategd 1 | 19 115 19 | 1
using (12) witm = 4 384 | 96 192 9% | 334

Actual number of occurrences 312 (22 863 |68 915 (22 807 |303
Expected number of occurrence$300 (22 800 |69 000 |22 800 |300

TABLE 5: Checking the results

(Actual — Expecteyt
2 Expected
basedon 4 degreeof freedom. The low value of 0.79 indicatesthat the

actualnumbersare entirely consistenwith the expectechumberspredicted
by (12).

Theseresultshavea chi-squarevalueof y* = = 0.79,

Asymptotic formulae

FromTable4 it appearghatincreasingn by a factorof 100 reduceghe
value of p(n) by a factor of approximately 10, suggesting that
asymptoticallyp(n) = k/+/n. Looking at the numericalvaluesof p(n)v/n
further suggests that = /6/7 = 1.38197659....

This approximationcanbe refinedfurther by looking for an asymptotic
series of the form

2 = (sinx\" 6 a; (503 dg ISV
n-1 = — (—)d ~ —(1+—+—+—+—).

P( ) nfo X 7 n n n n

(I've usedn — 1 here,ratherthann, so thatthe powerin the sineintegralis
n.)

Thevaluesof a;, a,, a3, a4 canbe found iteratively by calculatingp (n)
very accuratelyfor a few largevaluesof n andusingsimultaneougquations
to identify the successiveoefficients,assuminghat the denominatorswill
be oneof the‘usualsuspects’.This leadgo (14), which givesvery accurate
approximations (see Table 4).

5 3 13 27 52 791 .
n-1)= —(1 — — on7)). (14
P =D =75\t~ 20n ™ 11202 * 3000 T 3942400 (). 14
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Generating functions

Anotherway to checkthe resultsandlook for further connectionss to
find a generatingunction. After someexperimenting] havefoundthatthe
values of p(n, ¢€) can be capturedas the coefficients of the following
function:

o [3n]

n y coshyt
G(X7 t) = p(n, 8) th = T
g‘o S=Z[‘%n] y — sinhyt

wherey = %(\/)7 - %{) = sinh(} Inx).

For example to obtainthe termsup to t* we canusethe Mathematica
code
Series[y*Cosh[y*t]/(y-Sinh[y*t])/.y->(Sqrt[x]-1/Sqrt[x])/2,{t,0,4}]
This generates a series of the form

Gxt) =1+t+@xt+3+ 2+ (Ext+35+ Xt
+ (2 + B+ 18 B oAt . (15)
Thet* term reproduces the numerical valuep @f, ¢) shown in Table 5.

Basedon this generatingunction, we can also confirm that, for each
value ofn, the probabilities fop(n, ¢) sum to 1, since

o [%n] [
. : coshyt 1 n
p(n, &)t" = lim G(x, t) = lim : = =) 1t".
rgf)g=§%n] x—1 yﬁol_m 1-t ,]ZE,

y

So they define a valid probability distribution.
2

: . d : :
Also, evaluating lim %(G(x, t) using Mathematica shows that
Xx—1

Y e?p(n, ), the varianceof the errors,is equalto & (n + 1) whenn > 2.
So when n < 10, the standarddeviation will be less than 1 and the
rounding errors will typically be quite small.

The coefficientof x° in (15) givesa generatingunctionfor the valuesof
p(n),
G(t) = Tnoop(Mt" = 1+t + 5t2+ 23+ 183t% + $5t°+ S8Lt0 + Blt" +... (16)
The simplest formula | have been able to find for this series is

n_

G(t) = 1 21 (sinM t) + O(t*) for n = 1,2,3 (17)
_nkzog na - 9b=9 Ty oo

a coSat

— if a # 0,
a — Sihat

whereg(a, t) = <
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Interestingly, if we ‘rotate’ this function by replacing% with % + 0,

whereé is anarbitrary‘angle’, it still satisfies(17), althoughthe remainder
terms ‘hidden’ in the (t?") term will change.

In the limit as n — o, (17) becomesG(t) = Jo g(sinmx, t)dx.
(Rotationnow corresponds$o shifting the rangeof integration which leaves
the value of the integral unchanged.) If we apply the substitution
u = sinxX, we get

1 u cosut du
ou - sinut V1 — u?

This is valid whert < 1 and also generates the series in (16).

G(t) = j (sinzx, t)dx = —j (18)

And finally...

Returningto my original problem,the probability thatmy four numbers
didn'troundcorrectlyto 3,4 or 5 DPis (1 - p(3))® = (1 - %)3 =~ 0.037. (Note
that the numbersin my list were constrainedo addup to 1, so we needto
subtractl degreeof freedomfrom the value of n.) So perhapsl was just
unlucky with the setof numberd wasworking with. Nexttime | will avoid
the whole issueby addingthe disclaimer‘Becauseof rounding,the totals
don't necessarily add up exactly.’!
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