
 Y
 Y
 (orVle

 Fig. 1 A group at work in Harlow

 by
 by Peter Ransom

 Introduction

 I have an obsession with sundials, so when I noticed I was
 included in The Mathematical Association's Warwick Con-
 ference to 'do' a session on the history and mathematics of
 sundials it came as no surprise. For the past five years I have
 worked with year 9 pupils up to three times a year at
 Saturday morning Royal Institution Masterclasses which I
 call 'Fun with the Sun'. These I enjoyed doing at Newcastle
 upon Tyne, Harlow, Eastleigh, Portsmouth and Fareham.
 It is about time (sorry about the pun) something was set
 down on paper for others to read and use with pupils as
 those present at the conference workshop have experienced
 this directly. I have described some of the activities before
 (Ransom, 1993) but what appears here includes more prac-
 tical work and some of it is suitable as a problem solving
 activity with small groups.

 The mathematics covered involves

 nets (construction of a multiple sundial from a given
 net)
 language (parallel, net, latitude and longitude, inclined
 plane, rotation, angle, horizontal, estimate, circumfer-
 ence, etc.)
 arithmetic (four rules)
 estimation (of shadow time, and in reading graphs)
 reading graphs

 Constructing the Multiple Dial

 I think it important that young people who give up their
 time on a Saturday morning start with a practical activity.
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 Fig. 2 Multiple Dial Block constructed from net

 To break the ice and get them communicating I start
 my session by having them construct two multiple dials,
 one of which is given here. Of the two that they make, one
 is slightly easier and participants can decide on which to
 start.

 The net for this dial is given on page 10. The dial is

 calibrated for a latitude of 51a North. If you intend using
 this dial at places where the latitude is more, then either cut

 along the appropriate line (indicated for 520, 530 and 540
 North) or ignore them totally and put the dial on an inclined

 plane of the appropriate angle (xa for latitude (51 + x)a
 North). More about why later.
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 Instructions for construction

 Equipment needed:

 Each pupil needs:
 1 copy of the net photocopied onto card
 1 pair of scissors

 For every 5 pupils provide:
 1 craft knife
 1 ruler

 sellotape or glue stick

 1. Use a craft knife to slit the five thick lines on the dial
 faces.
 These are
 * the 12 line on the south face

 * the 12 line on the Carpe diem (Seize the day!) face
 * the 6 line on the west and east faces

 * the line pointing to G on the north face
 2. Cut out the net, and cut along all the solid lines.

 This includes the line segment between the west face
 and A, the south face and B, pieces D and E.

 3. Score all dashed lines on the lines and fold.

 4. Score all dotted lines on the opposite side to the line,
 and fold.

 5. Tuck

 * triangle A through Carpe diem slot
 * triangle B through south slot
 * rectangle C through west slot
 * rectangle D through east slot
 * triangle E through north slot

 6. Tuck flaps F and G in to complete the multiple dial
 block.

 A bit of glue and/or tape makes it more robust.

 A Bit of Theory

 Following the practical work with a bit of theory brings
 everyone together, and allows the constructed model to be
 used to illustrate this. For a sundial to tell the time accurately
 it needs to be oriented correctly. This involves getting the
 gnomon (the bit which casts the shadow) parallel to the
 Earth's axis. The picture of the armillary sphere (from the
 Latin word for band) sundial helps explain why.

 This sundial represents a 'see through' Earth. The arrow
 is the Earth's axis about which the sun appears to rotate. The
 brass plate with the hours on lies in the plane of the equator,

 Fig. 3 Partially
 completed block with
 A, B, D and E tucked

 through their slots
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 Fig. 4 Armillary sphere sundial

 and the hour divisions are equally spaced along this from
 6 a.m. due west to 6 p.m. due east. When the sun rises in the

 east the shadow of the gnomon falls on the 6 a.m. line, and
 as the sun appears to rotate, the shadow moves along this
 plate reaching 6 p.m. when the sun is due west. We therefore
 realise that the sun appears to rotate through 3600 in 24
 hours, i.e. 15a in 1 hour, or 1a in 4 minutes.

 Now this model is used for the basis of most sundials. It is
 worthwhile explaining that the gnomon of the sundial must
 be parallel to the Earth's axis, and illustrating this with the
 multiple sundial constructed.

 D
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 Fig. 5 The styles are all parallel

 Note the styles (the edge of the gnomon) AB, CD, EF and
 GH are all parallel, no matter how the dial block is oriented.
 For them to be parallel to the Earth's axis the angle between
 AB and the horizontal must be equal to the latitude of the
 place where it is used. To do this the appropriate incline can
 be cut along when constructing the model, or the dial can be
 put on an inclined plane. For example, at Elgin (latitude 570
 30' North) the dial will need to be inclined at 6.50 to put the
 gnomons at the correct angle. To do this put the dial on a
 6.5a slope.
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 Fig. 6 Net for the construction of the Multiple Dial Block by Peter Ransom
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 Fig. 7 The dial block on a slope for Elgin

 In fact a couple of degrees difference in latitude makes
 little difference to the accuracy of the time shown. This allows
 the dial to be erected at the correct angle, but how do we
 ensure the correct orientationa Since the gnomons must point
 to the north celestial pole, using a magnetic compass is not
 appropriate (this gives the north magnetic pole). However,
 since the dial will not give the correct time unless it is oriented
 correctly, all we need to do is to turn it until two faces (top
 and south say) show the same time.

 Fig. 8 Dial shown in roughly correct orientation-same
 time shown on two faces

 Another method of finding true north/south, being a
 practical application of bisecting an angle using ruler and
 compasses only, is shown in Ransom (1993).

 A Bit of History
 The principle of the sundial was known to the Chinese as
 early as 2500 BC, and sundials were widely used by the Greeks
 and Romans. In AD 606 the Pope is said to have ordered that
 sundials be placed on churches and this was probably the
 beginning of the long association of churches with sundials
 and clocks. The Saxon dial on Escomb church (Co. Durham)
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 is thought to be the oldest dial in situ in the UK, dating from
 the seventh century AD, though the Saxon dial on Bewcastle
 Cross also claims this honour! Some larger examples, con-
 taining information that allow us to date them more accu-
 rately, can be found in Yorkshire and Hampshire.

 Sundials rely on the casting by the sun of a shadow, of a
 simple rod or other structure called the gnomon (which pro-

 jects from the surface), onto a calibrated background called
 the dial plate. It is the leading edge of the shadow, cast by the
 style (the name given to the part of the gnomon that casts the
 edge of the shadow) that is read from the dial plate to find
 the time. The angle of the style to the horizontal must be the
 same as the latitude in which the dial is set up.

 The measurement of time is based on the rotation of the

 earth. The interval between successive (apparent) crossings
 of the sun across the imaginary line drawn through the north
 and south poles and that place (called the meridian) is known
 as the apparent solar day. This is because the shadow of the
 style on the dial plate depends on the position of the sun as
 it appears in the sky. Since the earth's orbit around the sun
 is an ellipse rather than a circle, and its axis is not perpen-
 dicular to the orbit's plane, the apparent solar day varies in
 length up to 31 minutes at the extremes of any year. Since
 this is not practicable for time keeping by clocks and watches,
 we average out these variations to produce mean time as in
 Greenwich Mean Time. This means that a correction factor
 needs to be applied to apparent solar time, which is that
 measured by a sundial. It was the introduction of the railways,
 and their need for a standard time for the whole country, that
 led to the introduction of Greenwich Mean Time in 1880.

 To adjust a sundial's time to G.M.T. then, we have to
 apply the appropriate correction (called the equation of time)
 which is obtained from a table, graph, or other chart; adjust
 for the longitude (add 4 minutes for each degree of longitude
 west of the Greenwich meridian: for every degree east of
 Greenwich subtract 4 minutes); and during the summer
 remember to add one hour for British Summer Time!

 For more information about time and the calendar, see Jack
 Oliver's article on page 2 of this issue.

 Practical Problem Solving
 Once pupils have made their multiple dials and dealt with the
 theory (covered in more detail in Ransom, 1993), it is time
 for some group work. They are asked to bring a clear plastic
 bottle and wire coat hanger to the session. At The Mathe-
 matical Association's Conference I brought some suitable
 bottles scavenged from the recycling bins, and coat hangers
 kindly provided by Bollom Cleaners. Most plastic bottles
 have their centres marked on the bottle top and base. To
 make suitable holes, cut off a piece of wire coat hanger, heat
 it in a blow torch flame and push it through the top, then
 bottom. At the masterclasses I do this while a helper cuts the
 hook off the hanger and the pupils are making the multiple
 dial. Instructions for making the bottle dial are given here.

 1. Measure the circumference of the bottle.
 2. Mark out a piece of paper as shown below, with equal

 spacing between the hour lines. It is advisable not to make
 the width less than 10 cm, though it depends on the size
 of the bottle.
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 Fig. 9 Dial plate for bottle
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 3. Make a hole in the bottom of the bottle (and in the top if
 necessary) with a hot piece of wire the same diameter as
 the wire coat hanger.

 4. Stick this piece of paper inside or outside the bottle as
 shown in the photograph. If the bottle is not transparent,
 then you will have to cut out a panel of a suitable size.

 5. Straighten out the coat hanger and insert it through the
 holes at the top and bottom of the bottle. The piece inside
 the bottle is now called the gnomon.

 6. Bend the wire so that the gnomon is inclined at the angle
 of latitude to the horizontal.

 7. Place the sundial so that the gnomon lies in the north--
 south direction as shown. The shadow of the gnomon will
 fall on the hour lines to show the local solar time.

 This is the time to go round offering encouragement and only
 give suggestions if pupils are truly stuck. It is interesting to
 watch them try to find the circumference of the bottle. In
 general an A4 piece of paper will not go around the circum-
 ference, and no one has any string! However, by folding the
 paper along a diagonal allows this to be wrapped around to
 find the circumference, and progress is made. Some pupils
 have problems getting the sundial to balance and use a bit of
 corrugated cardboard to make a suitable base. Others cut an
 appropriate angle from card to test for the correct angle of
 inclination. Once these are made it is good to go outside and
 test them (provided the sun is shining!), but you do need to
 have done a bit of the following work on reading a sundial.

 Reading a Sundial

 This section can be used in a classroom without having made
 any sundials, but is rather sterile without the motivation of
 the construction of the multiple dial or bottle dial.

 It is not often that the time shown on a sundial corresponds
 with the time shown on a watch or clock. Some basic mathe-
 matics is needed to read a sundial correctly, and how this is
 performed is now described. Here is C. Hunter's mural dial
 at Hurworth (Longitude 1a 32' West), England. Hunter was
 a pupil of William Emerson, a mathematician from County
 Durham who lived 1701-1782.

 Fig. 10 Dial made from small bottle, showing 2.45 p.m.
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 Fig. 11 Hunter's dial, Hurworth, Co. Durham

 Here I estimate the time shown by the shadow to be
 2.10 p.m.

 Next, we need to see if the dial is fast or slow, and make
 the necessary adjustment. Since the earth does not travel at
 a constant speed around the sun, it means that the sun's
 apparent motion around the earth is at times fast and other
 times slow. Our clocks and watches average out this differ-
 ence over the year: we use 'mean time'. To adjust for this we
 use 'the equation of time'. This is not an equation as we think
 of it, but a table or graph showing how fast or slow the dial
 is, thus equating the solar time to mean time. It is shown in
 the form of a multiple graph here.

 We now have to do some calculations to adjust for the
 longitude of the sundial's position. Since the sun appears to
 go round the earth in an east to west direction, this motion

 corresponds to travelling through lo in 24 x 60/360 minutes;
 i.e. 1a in 4 minutes. Therefore for every degree west of the
 Greenwich meridian the sun time appears to be 4 minutes
 behind the mean time.

 With these adjustments in mind we can now find Green-
 wich Mean Time for Hunter's dial shown on 5th August.

 * Shadow time shows approximately 2.10 p.m.
 * From the equation of time, dial is 6 minutes slow.

 Therefore add 6 minutes: 2.16 p.m.
 * Longitude 1a 32' West corresponds to (1 + 32/60) x 4 = 6

 minutes behind G.M.T.
 Therefore add 6 minutes: 2.22 p.m.

 * 5 August occurs during British Summer Time!
 Hence we need to add one hour: 3.22 p.m.

 Summary

 There is a lot of mathematics that can be motivated through
 sundials. I have described just two activities but higher
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 attainers can explore some of the trigonometry behind mak-
 ing horizontal sundials, or construct sundials through ruler
 and compass construction. For pupils who are interested
 there is ample scope for this to form GCSE coursework, and
 it could be integrated with technology if the dial was con-
 structed from appropriate materials. There is an admirable
 section in The Mathematical Association's report The Teach-
 ing of Trigonometry in Schools (1950) on pages 54 to 57 which

 looks at the subject. Nothing new under the sun! 1-7
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 Calendrical Calculations

 Nachum Dershowitz & Edward M. Reingold
 Cambridge University Press 1997
 xxi + 307 pages

 ISBN 0 521 56413 1 (hb), O 521 56474 3 (pb)
 a40 & a14.95 (US $64.95 & $22.95).

 What a wizard wheeze! A set of computer pro-
 grammes to calculate any date in any calendar
 and convert between them. Praise, first, for
 Dershowitz and Reingold, computational calen-
 dricologists, who have devoted a large part of
 their joint lives to a task which anyone in their
 right mind will be glad someone else did.

 Calendrical Calculations is presented by its
 publishers as "definitive", "accurate", "useful",
 "easy" and "a must" which, coming from CUP,
 immediately arouses interest. Its purpose is "to
 present, in a unified, completely algorithmic form,
 a description of fourteen calendars and how they
 relate to one another". The world's main calen-

 dars are all here: Christian (both Gregorian and
 Julian), Hebrew, Hindu (both old and modern),
 Islamic, modern Persian, Coptic, Mayan and
 Chinese. There are also three modern reformed

 calendars, all of them effectively defunct: the
 Baha'i calendar, the French revolutionary
 calendar, and the ISO (International Standards
 Organization) calendar, an excessively sensible
 Swedish invention. Brief explanations are given
 of each, and there are valuable overview chap-
 ters on calendars in general and on time and
 astronomy. The bulk of the book, however, is
 given over to an explication of the algorithms into
 which the calendars are translated, in a computer
 language called LISP. These are set out in an
 appendix. The book comes complete with a
 licence (yes, you are allowed use it) and an
 associated website, bristling with errata.

 As the millennium approaches, books purport-
 ing to explain the calendar are appearing like cactus
 flowers after a storm, full of second-hand errors,
 third-order simplifications and outright myths.
 Dershowitz and Reingold, by contrast, have
 worked at source and confronted every difficulty.
 Their book can be recommended as a pithy and
 reliable distillation of all the world's main calen-

 dars. As a bare work of reference, it leads the
 market. Its corresponding weakness is the need
 to fix upon one version of each calendar as defini-
 tive, whereas all major calendars have in fact been
 modified and adjusted over the centuries. This
 robs it of historical value, and makes long-range
 projections and comparisons unreliable.

 The authors indeed point out (p.29) that their
 method produces answers which are "mathe-
 matically sensible, but culturally wrong". Some
 examples will illustrate this point. The Julian and
 Gregorian calendars are treated as two distinct
 entities, even though the Gregorian was in fact a
 minor correction to the Julian. Its adoption in
 different states at various stages over the four
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 centuries since 1582 is not tracked; we are
 offered instead two timeless and unreal para-
 digms, hypothesizing Easters which never in fact
 existed. The computer cannot cope with Gregor-
 ian countries which observe a Julian Easter (such
 as Greece), or an astronomical Easter (as with
 some eighteenth century Protestant states). It is

 thrown by the Julian hop from AD 1 to 1 Bc, and
 invents a Gregorian year 0, giving out-of-synch
 ac dates for the two versions of the Christian

 calendar. The Islamic calendar given is the civil
 version only, whereas the Islamic calendar is
 religious; its holy days are determined by obser-
 vation and announced annually by the religious
 authorities; they cannot simply be extracted from
 the civil framework. The existence of a theologi-
 cal divide in the Islamic world between those who

 measure time by local observation of the new
 moon and those who accept pips from Mecca is
 not recognized.

 Oblivious to such incalculables, the computer
 races serenely on, generating absurdities such as
 Mayan equivalents for 39 December and the Gre-
 gorian Easter for the year zero. Curiously, it fol-
 lows American cultural convention in recording
 dates in the mathematically illogical form of
 month-day-year. Finally, there is the little problem
 of the time of the day. The computer has to cope
 with different conventions of starting the day at
 sunrise, midnight, noon and sunset, with local
 time (general until the mid-nineteeth century),
 with different time zones, with daylight saving
 time (which is explicitly ignored) and with events
 such as Easter, Passover and lunar months which
 rely on exact observation of the phases of the
 moon and which can differ by a month depending
 upon how and where the measurement is done.
 The solution is to take the day as beginning at
 midnight but make conversions at noon, Julian
 time. So, we can give or take a day throughout.

 Such problems are generated by the very
 nature of the enterprise, and Dershowitz and
 Reingold are well aware of the limitations of the
 digital approach to calendars. They readily admit
 (p.28) that "the astronomical code we use is not
 the best available, but it works quite well in
 practice, especially for dates around the present
 time, around which it is approximately centred.
 More precise code would be time-consuming and
 complex and would not necessarily result in more
 accurate calendars." No matter, for the computer
 programme on which the book is based will soon
 be as obsolete as the punch card. Here and
 there, there are hints that the authors (under-
 standably) favour simplified calendars such as
 the French revolutionary and ISO calendars,
 from whose short and troubled histories there are

 surely lessons to be drawn.
 The calendar, any calendar, is by its very

 nature an analogue device, designed to track the
 incommensurable movements of the earth,
 moon and sun, to accommodate feasts and holy

 days governed by arbitrary human rules, and to
 reconcile conflicts with reference variously to
 civil, theological or astronomical criteria. No for-
 mula can express all that. It is precisely because
 calendars cannot attain regularity that civil and
 religious conventions have evolved to govern
 them. To attempt to reduce these to digital uni-
 formity is sheer hubris. Computers can mimic the
 calendar, just as they can mimic thought, but a
 computer program will not be the calendar, and
 cannot be interrogated as if it were; we are talking
 to the monkey, not the organ-grinder. At best,
 matching calendars is as delicate as mating pan-
 das. At worst, it is as vain as trying to adapt
 Australian railway trains to run on tramways in
 Manchester, or trying to find the date of the world
 cup in pre-conquest America. The history of
 western attempts, since the enlightenment, to
 reduce the complex cycles of the human and
 natural calendars to astronomical or digital
 perfection is in itself an episode in the history
 of science whose history, perhaps fortunately,
 remains to be written.

 We can be grateful that so useful a work of
 reference has been created from a project of
 such awe-inspiring futility.

 Robert Poole

 Starting From Maps and Plans
 Diane Cobden with Fran Mosley
 BEAM 1998
 ISBN 18 74099 60 X

 50 pages
 a6.50 + a2.00 p & p.

 In the profession's headlong rush into a tightly
 structured numeracy-based mathematics cur-
 riculum it must be hoped that teachers will not
 forget the importance of making valid links with
 other subjects. Such thinking places mathemat-
 ics in a context and encourages children to get to
 grips with the meaning of the concept as well as
 the tricks and skills involved. Indeed the Numeracy
 Task force did not forget this and highlighted the
 need for sensible links to be made. Two subjects
 with clear links are mathematics and geography.
 Connections have already been made in many of
 the more recent major schemes, but this book
 sets out to pull some of the ideas together and
 suggest the use of geography as a medium for
 the teaching of mathematics.

 It includes open-ended ideas for pupils at Key
 Stages 1 and 2 exploring plans and elevations,
 projection, scale and enlargement, map-making,
 grid referencing, longitude and latitude and the
 mathematics of globes. The ideas are sound,
 although occasionally implying the tiresome
 collection of resources, wrapped up in BEAM's
 usual high quality production package. Recom-
 mended.

 Paul Small
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