
 The School Photo Problem

 by Julian Parmar

 A few months ago, a group of friends and I attended a Maths

 Conference run by teachers from our school to broaden our

 mathematical experience, and hopefully to have some fun as

 well! We found the day very rewarding, learning new

 techniques to solve a multitude of different types of

 problems by working through some examples, and then

 working in groups of four or five to solve a sheet of

 questions. Another valuable aspect to the conference was

 that we were given a talk on studying Engineering at

 university, which many of us found very interesting.

 Towards the end of the day, one of our teachers threw us an

 open problem, challenging us to find a solution. In the half-

 hour that we had, we came up with all sorts of random

 formulae (mostly through guesswork!), and didn't get very

 far. On returning home, I still found the unsolved problem

 annoying me, so I sat down for a few hours and created a

 solution. I found it to be a very interesting problem, one of

 those which seems simple, but for which it is difficult to find

 a solution. I'd like to present it here, not as a rigorous proof,

 but rather as a piece of interesting mathematics. I hope that

 you enjoy reading my solution as much as I enjoyed

 exploring it!

 The Problem

 The arrangement for a school photo containing an even

 number of pupils is as follows:

 1. The pupils must be in two rows.

 2. The pupils must be arranged in increasing height order

 from left to right.

 3. A pupil on the back row must be taller than his/her

 corresponding pupil on the front row.

 How many arrangements are there for 2n (an even number

 of) pupils?

 The Solution

 The first hurdle was to find a way of expressing the formula

 in a mathematical way that I could manipulate easily. I

 decided to use a matrix form, where each ai represents a

 pupil, as follows:

 a2 a4 a2n where a. E Z+.

 a, a3 3 a2n-1

 In order to consider this problem, only the bottom row

 needs to be used, as any bottom row arrangement gives a

 unique top row arrangement, containing all the a, which are

 not in the bottom row arranged in ascending order from left

 to right. The starting number on the bottom row is always 1,

 as it is the smallest number.

 To be able to spot a relationship, let us only consider the

 first k columns, denoted by ck.

 Note that however many columns there are in the complete

 matrix, the first k columns can only be arranged in a certain

 number of ways. Here are the possibilities for c2 and c3.

 C2

 1l 2 2

 1 3 .3

 Note:

 1 4 . . would not work, as 2 and 3 would have to

 go on the top.

 2 3

 1 4 which puts 3 behind 4.

 This means that for a matrix of any size, the first two

 columns can only be arranged in two ways.

 123..

 C3

 [1 2 3 .

 1 2 4 ..3

 1 2 5 ..

 1 3 4 2.

 135 .

 Note:

 3 4 5
 1 2 6

 and

 11 3 6 .. [2 4 5
 1 3 6

 would not work, as positioning the other numbers on the top

 row would place 5 behind 6.

 Each matrix can generate a set of matrices which all start

 with the same pattern, but end differently. If we look at the

 number of permutations that a particular set can generate

 when k increases by 1, a pattern emerges.

 [1 2 3 4 ..]

 [1 Z 3 5 ..]

 I~1 z 3 6 ..]

 [1 2 3 7 ..]

 The matrix [1 2 3 4..], for c , would generate matrices which

 all start [1 2 3 4.. ].
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 In general, for c, this matrix generates the set of matrices

 11 2 3 4 p . .],5_p_<9}-45 matrices.

 The matrix 1 2 3 5 . . gives the set of matrices

 1 2 3 5 p ..],6<p<9 -4 4 matrices.

 The matrix 1 2 3 6 . . gives the set of matrices

 [1 2 3 6 p. .5, 7 - p- 91 - 3 matrices.

 The matrix 1 2 3 7 . . gives the set of matrices

 [1 2 3 7 p .., 8_p_<9}--->2matrices.

 It can be seen from this that a set of 4 matrices generates:

 " A set of 5 matrices

 * A set of 4 matrices

 * A set of 3 matrices

 " A set of 2 matrices

 This pattern can be generalized:

 A set of w matrices generates:

 * A set ofw + 1 matrices

 " A set of w matrices

 " A set ofw - 1 matrices

 SA set of4 matrices

 * A set of 3 matrices

 * A set of 2 matrices

 These generated sets can be viewed as sequences; for

 example, a set containing 4 values will generate a sequence

 of sets containing 5, 4, 3 and 2 members. Now this is starting

 to become interesting. If we can get from the first set of 2

 matrices (c2), to the next sequence, and from the next

 sequence to the sequence after that, we could potentially

 find the number of matrices in any sequence. Then all we

 would have to do is to add up the total number of matrices

 in all the sequences with matrices of length n, and we would

 find our solution. However, you might realize that this

 would take a long time. I have done it in the diagram below

 for 2n _ 12, but it is already becoming quite hard work.

 n Sum of

 row

 2 4 2

 13 6 5

 3 2

 4 2 2 4 8 14

 4 3 2 4 3\22 4 3 / 3 2 5 10 42

 6/A 3 5114A\2) \1

 4 32 43 2 4 32 4 32 4 3 2 12 132

 The following table details the number of times each

 particular term of a sequence appears in 2n. For example, in

 the diagram, there are 14 '2's in the 2n = 12 row. If the sum

 of the coefficients in the table with their relative multipliers

 along the top row is taken for a particular row, it will

 generate the number of permutations possible for that row.

 For example, for 2n = 6, we add up:

 1 x 2 + 1 x 3 = 2 + 3 = 5,

 so there are 5 possibilities for 6 children in a photo. Check

 this result by writing the possibilities out if you want.

 n 2n x2 x3 x4 x5 x6 x7 x8 x9

 2 4 1

 3 6 1 1

 4 8 2 2 1

 5 10 5 5 3 1

 6 12 14 14 9 4 1

 7 14 42 42 28 14 5 1

 8 16 132 132 90 48 20 6 1

 9 18 429 429 297 165 75 27 7 1

 We have already seen that a set consisting of w matrices will

 generate a sequence:

 w + 1, w, w - 1, w - 2, ..., 4, 3, 2.

 Adding an extra column to the table for the total number of

 permutations gives us an insight into how to proceed:

 n 2n x2 x3 x4 x5 x6 x7 x8 x9 Permutations

 2 4 1 2

 3 6 1 1 5

 4 8 2 2 1 14

 5 10 5 5 3 1 42

 6 12 14 14 9 4 1 132

 7 14 42 42 28 14 5 1 429

 8 16 132 132 90 48 20 6 1 1430

 9 18 429 429 297 165 75 27 7 1 4862

 It can be seen clearly that the '2' coefficient for the row

 'n + 2' is equal to the number of permutations for the row

 'n', which can be generalized for all n.

 So we proceed to find a recurrence relation to get from one

 row to the next. The coefficient of a particular multiplier can

 be denoted by rn(z) where z is the multiplier, e.g. r9(9) = 1,

 r9(8)= 7, r9(7) = 27.

 For all n > 2

 rn(n) = rn_,(n- 1) = 1

 rn(n - 1) = rn_,(n - 1) + rn-_(n - 2) = n - 2

 rn(n - 2) = rn_,(n - 1) + rn_,(n - 2) + rn_,(n - 3) = n - 2+ rn-1_(n - 3).

 We can continue like this to find relations for all of the cells

 in the table; however, it doesn't help us very much unless we

 can find a simpler way of writing it.

 rn(n-2) = (n - 2) + rn-_l(n - 3)

 = (n - 2) + (n - 3) + r_2(n-4)

 = (n - 2) + (n - 3) + (n - 4) + rn-3(n - 5)

 = (n - 2) + (n - 3) + (n - 4) + (n - 5) +...+ 3 + 2

 n-2

 r (n - 2)- = k.

 2
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 So, it turns out that we can express the coefficient of (n - 2)

 in the row n as simply a sum from 2 to (n - 2).

 We can use this to produce an expression for the coefficient

 of (n - 3) as follows:

 n-2

 rn(n-3)=Y k+rln-(n-4)

 2

 n-2

 r (n-3)= 0k+ r (n-3) +T (n-5)

 n n-I n-2

 2

 n-2 n-3

 r (n-3)= k+lk+Tr2 (n-5)

 2 2

 n-2 n-3 n-4

 r (n-3)= k+ k+ k + rn3 (n- 6)

 2 2 2

 n-2 n-3 n-4 3

 r (n-3)= Yk+Yk+lk+...+ k

 2 2 2 2

 n-2 a

 r (n-3)= Y k.

 a=3 2

 We can produce relations for all of the other coefficients as

 well.

 n-2 a2 a

 r (n-4)= Y k

 a2= 4 al= 3 2

 n-2 a3 a2 a

 rn (2)- = "". yk.

 an_3=n-1 a2= 4 a= 3 2

 So this has led us to a formula for the number of

 permutations for 2n pupils in the school photograph as:

 n a3 a2 al

 P2n n+2(2) = ... 1 k.

 an_3= n-1 a2= 4 a,= 3 k = 2

 This can be simplified even further, by employing the

 following summation formulae:

 n 1

 k =0 n(n + l)

 I, 2!

 n al 1

 I _ k= 1n(n + 1)(n + 2)

 a,=l 1 3

 ...and so on.

 By using these multiple times, and keeping track of all of the

 ns and other bits and pieces, we can produce a really nice

 formula for the total number of permutations.

 Let's start by simplifying the number of permutations for

 n = 3, where 2n = 6.

 Let us consider:

 3 a, 3 a, 1 2 3 3

 a = k- 1 a k= 3k+2k+1 k - k

 al= I3I2 a= 21 1 2

 By changing the lower value on the initial I from 1 to 2, and

 changing the lower value on the second I from 2 to 3, we

 have effectively:

 3 3

 1. Subtracted 1, as ik- k=-1.

 1 2 2

 2. Subtracted another 3, as the k= 1+2= 3

 has been removed as well. 1

 1

 3. Subtracted another 1, as the Ck= 1.

 1

 So0, 3 al 3 al

 1 k- Y Yk=3+2.

 a=l1 1 a = 3 2

 Therefore

 3 a, 1

 1: k=- .3. (3+1)(3+ 2)- (3+ 2)

 al= 3 2 3

 1 (3-2)(3+2)(3+3).

 3!

 Extending this for any n

 n a3 a2 a1

 P2n rn+2(2)= C ... C C k

 an_3=n-1 a2= 4 al= 3 k= 2

 S(n - (n -1))(n + n)(n + n - 1)...(n + 2).

 n!

 This can be expressed in factorial form as

 (n - (n -1))(n + n)(n + n -1)...(n + 2)(n +1)...3 . 2 .1 1

 (n+1)...3.2.1 n!

 (n+n-1Xn+n)! (2n)!

 n! (n + 1)! n! (n +1)!

 This formula in fact holds for all n, which yields a fairly

 simple, closed solution to the problem.

 P2n (2n)!
 2n = !(n + 1)!
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